Hard Exclusive Reactions at COMPASS at CERN

Exclusive photon (DVCS) and meson (HEMP) production

at small transfer for GPD studies

DVCS: $\mu p \rightarrow \mu' p' \gamma$



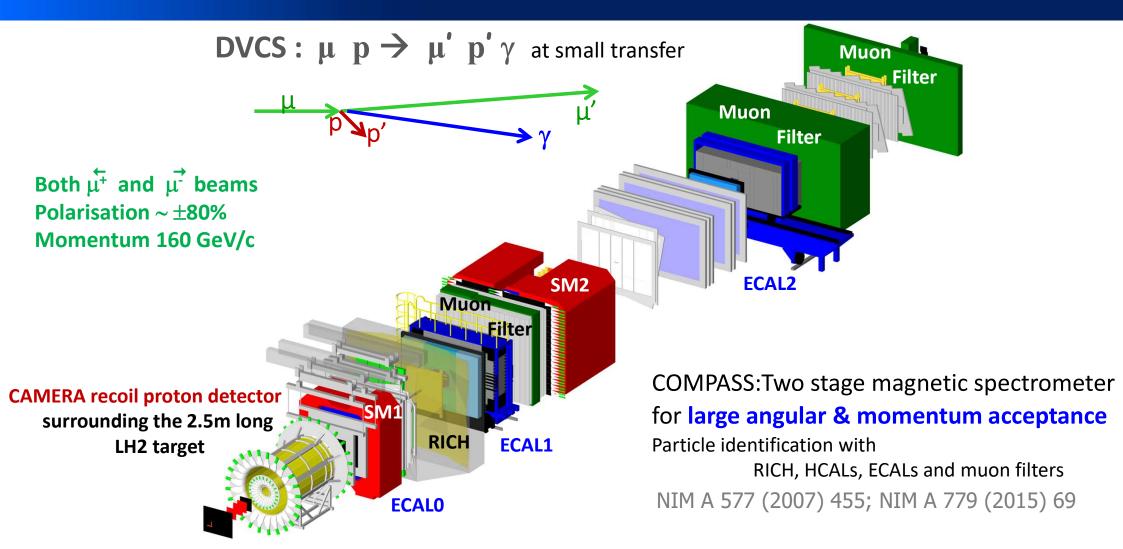
Pseudo-Scalar Meson : $\mu p \rightarrow \mu' p' \pi^0$

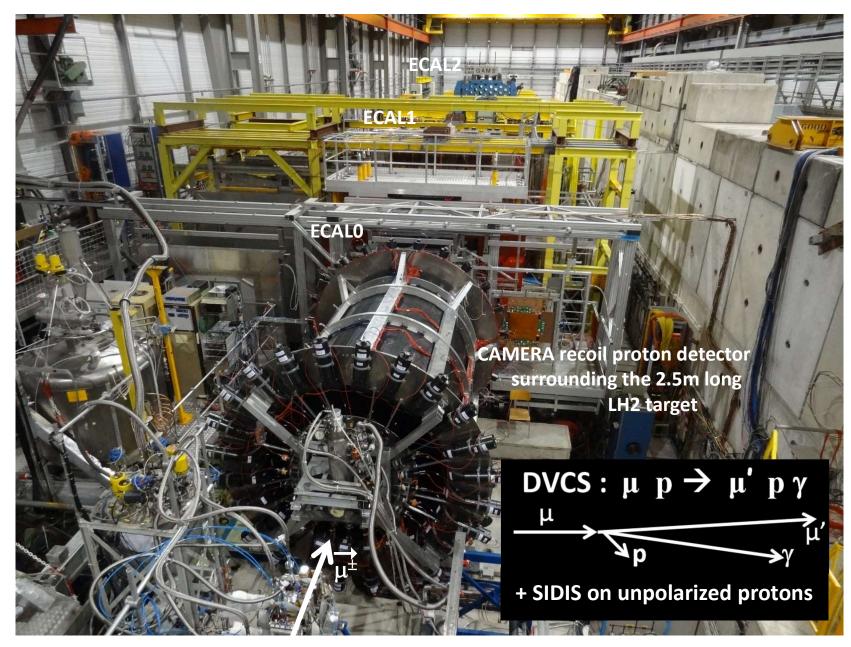
Vector Meson : μ $p \rightarrow \mu'$ $p' \rho$ or ω or ...

Nicole d'Hose - CEA Université Paris-Saclay for the COMPASS Collaboration

Opportunities with JLab Energy and Luminosity Upgrade

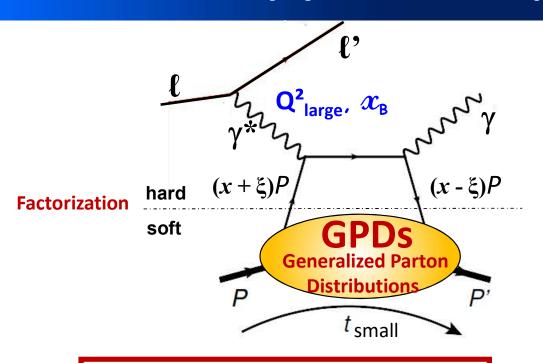
Measurement of exclusive cross sections at COMPASS





2012:1 month pilot run

2016 -17: 2 x 6 month data taking



The GPDs depend on the following variables:

x: average quark longitudinal ξ: transferred momentum fraction

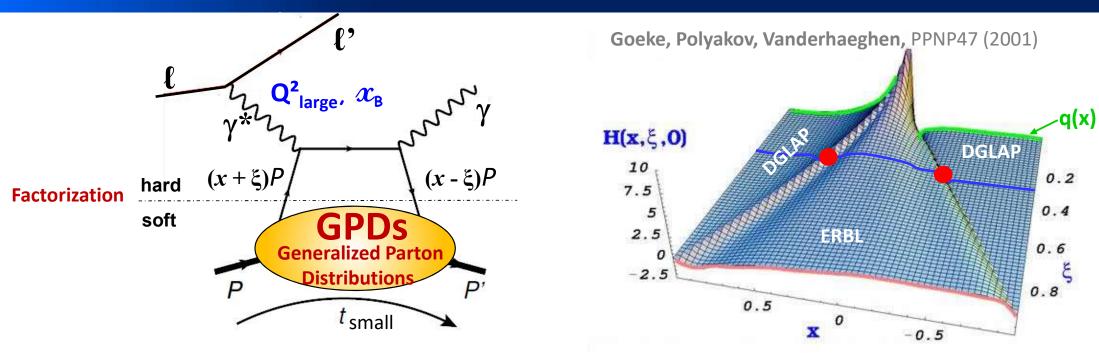
t: proton momentum transfer squared related to b_⊥ via Fourier transform
 Q²: virtuality of the virtual photon

D. Mueller *et al*, Fortsch. Phys. 42 (1994) **X.D. Ji**, PRL 78 (1997), PRD 55 (1997) **A. V. Radyushkin**, PLB 385 (1996), PRD 56 (1997)

DVCS: $\ell p \rightarrow \ell' p' \gamma$ the golden channel because it interferes with the Bethe-Heitler process also meson production $\ell p \rightarrow \ell' p' \pi$, ρ , ω or ϕ or J/ψ ...

The variables measured in the experiment:

$$\begin{split} & E_{\ell}, \, Q^2, \, \textbf{\textit{x}}_{B} \sim 2\xi \, / (1 + \xi), \\ & t \, \left(\text{or} \, \theta_{\gamma^* \gamma} \right) \, \, \text{and} \, \varphi \, \left(\ell \ell' \, \text{plane/} \gamma \gamma^* \, \text{plane} \right) \end{split}$$



The amplitude DVCS at LT & LO in α_{S} (GPD ${f H}$): Real part Imaginary part

$$\mathcal{H} = \int_{t, \, \xi \text{ fixed}}^{+1} dx \, \frac{\mathrm{H}(x, \xi, t)}{x - \xi + i \, \varepsilon} = \mathcal{P} \int_{-1}^{+1} dx \, \frac{\mathrm{H}(x, \xi, t)}{x - \xi} \, - i \, \pi \, \mathrm{H}(x = \pm \, \xi, \, \xi, \, t)$$

In an experiment we measure

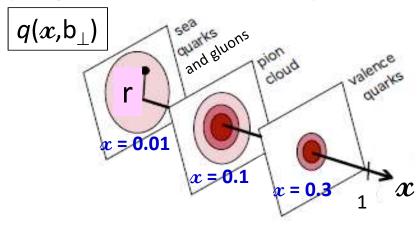
Compton Form Factor ${\mathcal H}$

M. Burkardt, PRD66(2002)

M. Polyakov, P. Schweitzer, Int.J.Mod.Phys. A33 (2018)

 $r^2p(r)$ in GeV fm⁻¹

Mapping in the transverse plane



Pressure Distribution

0.01

0.005 $\int_{0}^{\infty} dr \, r^{2} p(r) = 0$ confining pion cloud

quark
core repulsive In χ QSM0 0.5 1 r in fm

The amplitude DVCS at LT & LO in $\alpha_{\rm S}$ (GPD ${
m H}$): Real part

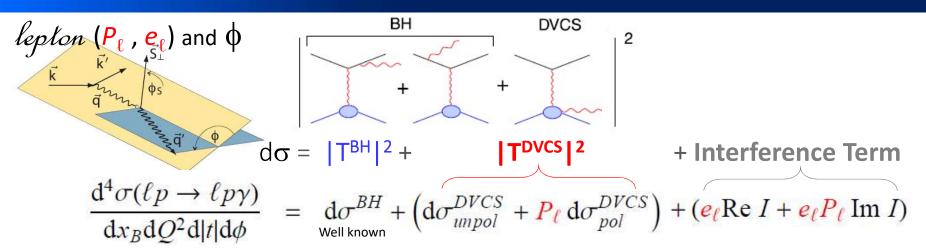
Real part Imaginary part

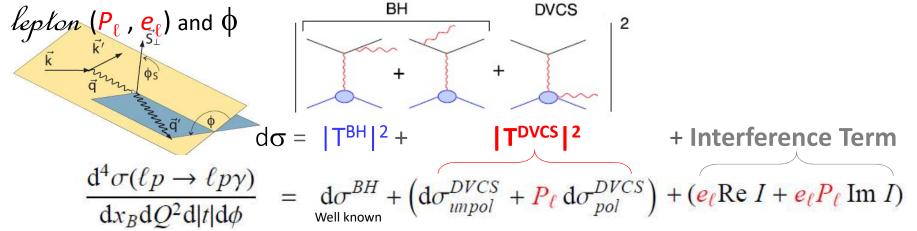
FT of H(x, ξ =0,t)

$$\mathcal{H} = \int_{t, \, \xi \, \text{fixed}}^{+1} dx \, \frac{H(x, \xi, t)}{x - \xi + i \, \epsilon} = \mathcal{P} \int_{-1}^{+1} dx \, \frac{H(x, \xi, t)}{x - \xi} \, - i \, \pi \, H(x = \pm \, \xi, \, \xi, \, t)$$

In an experiment we measure Compton Form Factor ${\mathcal H}$

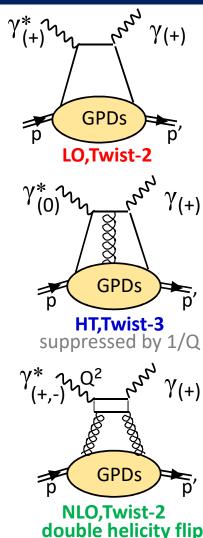
$$\operatorname{Re}\mathcal{H}(\xi,t) = \pi^{-1} \int_0^1 dx \, \frac{2x \, \operatorname{Im}\mathcal{H}(x,t)}{x^2 - \xi^2} + \Delta(t)$$



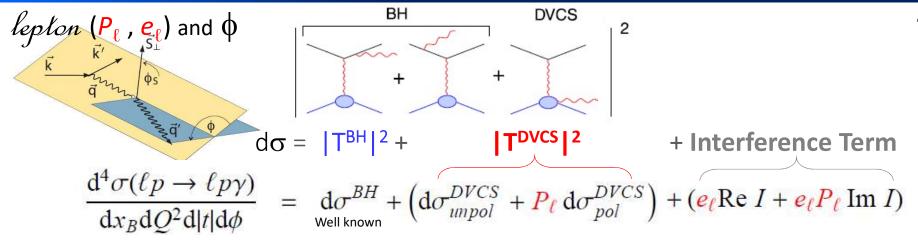


With unpolarized target:

Belitsky, Müller, Kirner, NPB629 (2002)



suppressed by α_s

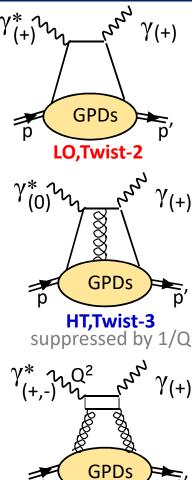


With both μ^{+} and μ^{-} beams we can build:

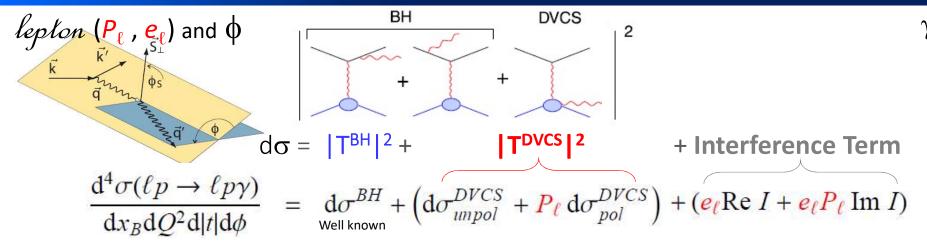
• beam charge-spin sum

$$\Sigma \equiv d\sigma \stackrel{+}{\leftarrow} + d\sigma \stackrel{-}{\rightarrow}$$

$$\begin{array}{cccc} \mathrm{d}\sigma^{BH} & \propto & c_0^{BH} + c_1^{BH}\cos\phi + c_2^{BH}\cos2\phi \\ \mathrm{d}\sigma^{DVCS}_{unpol} & \propto & c_0^{DVCS} + c_1^{DVCS}\cos\phi + c_2^{DVCS}\cos2\phi \\ \mathrm{d}\sigma^{DVCS}_{pol} & \propto & s_1^{DVCS}\sin\phi \\ & \mathrm{Re}~I & \propto & c_0^I + c_1^I\cos\phi + c_2^I\cos2\phi + c_3^I\cos3\phi \\ & \mathrm{Im}~I & \propto & s_1^I\sin\phi + s_2^I\sin2\phi \end{array}$$



NLO,Twist-2 double helicity flip suppressed by α_s



With both μ^{+} and μ^{-} beams we can build:

• beam charge-spin sum

$$\Sigma \equiv d\sigma \stackrel{+}{\leftarrow} + d\sigma \stackrel{-}{\rightarrow}$$

2 difference

$$\Delta \equiv d\sigma \stackrel{+}{\leftarrow} - d\sigma \stackrel{-}{\rightarrow}$$

$$s_1^I \propto Im \ \mathcal{F} \quad c_1^I \propto Re \ \mathcal{F}$$

$$c_1{}^I \propto Re \ \mathcal{F}$$

$$d\sigma^{BH} \propto c_0^{BH} + c_1^{BH} \cos \phi + c_2^{BH} \cos 2\phi$$

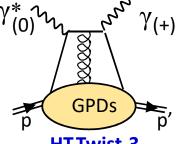
$$d\sigma^{DVCS}_{umpol} \propto c_0^{DVCS} + c_1^{DVCS} \cos \phi + c_2^{DVCS} \cos 2\phi$$

$$d\sigma^{DVCS}_{pol} \propto s_1^{DVCS} \sin \phi$$

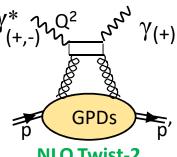
$$Re I \propto c_0^I + c_1^I \cos \phi + c_2^I \cos 2\phi + c_3^I \cos 3\phi$$

$$Im I \propto s_1^I \sin \phi + s_2^I \sin 2\phi$$

$$\mathcal{F} = \mathcal{F}_1 \mathcal{H} + \xi (\mathcal{F}_1 + \mathcal{F}_2) \mathcal{H} - t/4m^2 \mathcal{F}_2 \mathcal{E}^{\text{for proton}} \mathcal{F}_1 \mathcal{H}$$



HT,Twist-3 suppressed by 1/Q



NLO,Twist-2 double helicity flip suppressed by α_s

COMPASS 2016 data Selection of exclusive single photon production

Comparison between the observables given by the spectro or by CAMERA

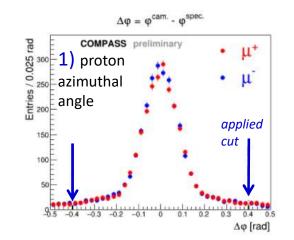
DVCS: $\mu p \rightarrow \mu' p \gamma$

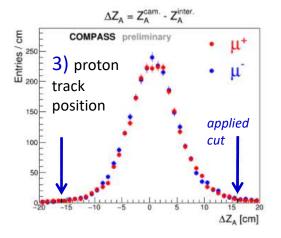
- 1) $\Delta \varphi = \varphi^{\text{cam}} \varphi^{\text{spec}}$
- $2) \Delta p_T = p_T^{cam} p_T^{spec}$
- 3) $\Delta z_A = z_A^{\text{cam}} z_A^{Z_B \text{ and vertex}}$
- 4) $M^2_{X=0} = (p_{\mu_{in}} + p_{p_{in}} p_{\mu_{out}} p_{p_{out}} p_{\gamma})^2$

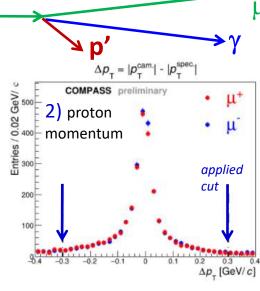
Good agreement between $\vec{\mu}$ and $\vec{\mu}$ yields Important achievement for:

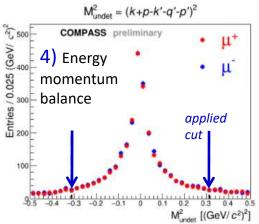
$$\bullet \sum \equiv d\sigma \stackrel{+}{\leftarrow} + d\sigma \stackrel{-}{\rightarrow} \quad \text{Easier, done first}$$

2
$$\Delta \equiv d\sigma \leftarrow -d\sigma \rightarrow$$
 Challenging, but promising



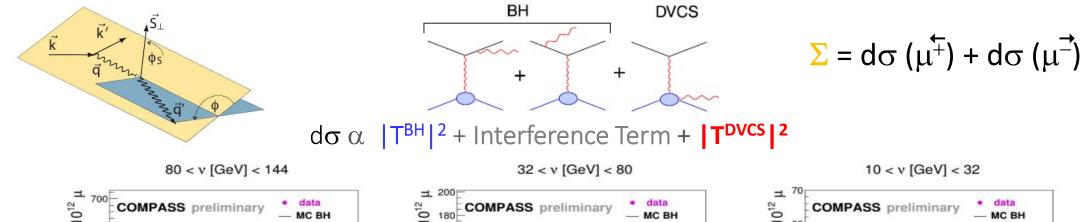


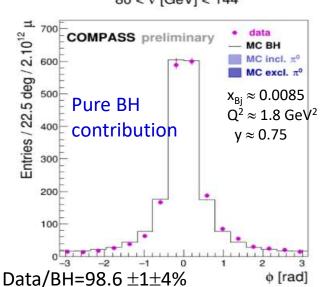


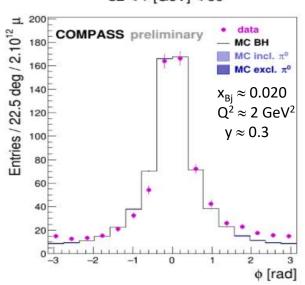


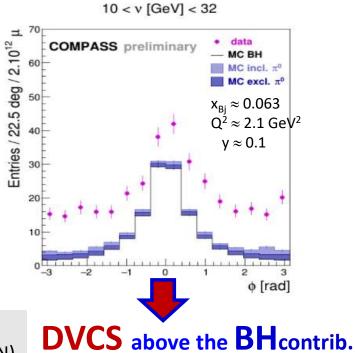
COMPASS 2016 data

DVCS+BH cross section at Eµ=160 GeV









MC: BH contribution evaluated for the integrated luminosity π° background contribution from SIDIS (LEPTO) + exclusive production (HEPGEN)

DVCS cross section for $10 < \upsilon < 32$ GeV

At COMPASS using polarized positive and negative muon beams:

$$S_{CS,U} = d\sigma \stackrel{+}{\leftarrow} + d\sigma \stackrel{-}{\rightarrow} = 2[d\sigma^{BH} + d\sigma^{DVCS}_{umpol} + Im I]$$

$$= 2[d\sigma^{BH} + c_0^{DVCS}] + c_1^{DVCS} \cos \phi + c_2^{DVCS} \cos 2\phi + s_1^{I} \sin \phi + s_2^{I} \sin 2\phi]$$

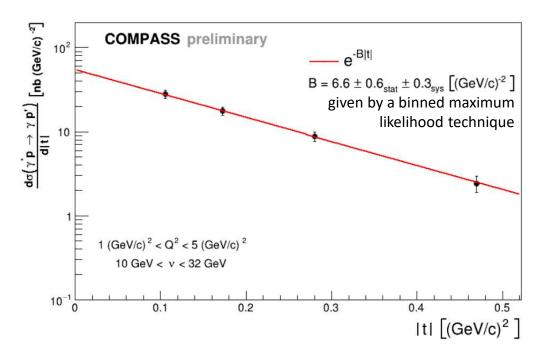
calculable can be subtracted

All the other terms are cancelled in the integration over ϕ

$$\frac{\mathrm{d}^3 \sigma_{\mathrm{T}}^{\mu p}}{\mathrm{d}Q^2 \mathrm{d}\nu dt} = \int_{-\pi}^{\pi} \mathrm{d}\phi \, \left(\mathrm{d}\sigma - \mathrm{d}\sigma^{BH}\right) \propto c_0^{DVCS}$$

$$\frac{\mathrm{d}\sigma^{\gamma^* p}}{\mathrm{d}t} = \frac{1}{\Gamma(Q^2, \nu, E_\mu)} \frac{\mathrm{d}^3 \sigma_{\mathrm{T}}^{\mu p}}{\mathrm{d}Q^2 \mathrm{d}\nu dt}$$

Flux for transverse virtual photons



COMPASS 12-16 Transverse extention of partons in the sea quark range

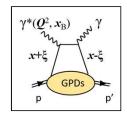
$$d\sigma^{DVCS}/dt = e^{-B|t|} = c_0^{DVCS} \propto (Im\mathcal{H})^2$$

$$c_0^{DVCS} \propto 4(\mathcal{H}\mathcal{H}^* + \tilde{\mathcal{H}}\tilde{\mathcal{H}}^*) + \frac{t}{M^2}\mathcal{E}\mathcal{E}^*$$

In the COMPASS kinematics, $x_B \approx 0.06$, dominance of $Im \mathcal{H}$ 97% (GK model) 94% (KM model)

$$Im\mathcal{H} = H(x=\xi, \xi, t)$$

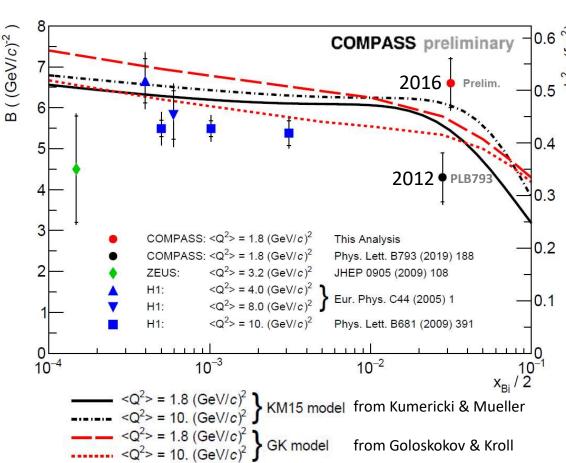
 $x = \xi \approx x_B/2$ close to 0



$$q(x, \mathbf{b}_{\perp}) = \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}} H_{-}^q(x, 0, -\mathbf{\Delta}_{\perp}^2).$$

$$\left\langle b_{\perp}^{2}\right\rangle _{x}^{f}=\frac{\int d^{2}b_{\perp}b_{\perp}^{2}q_{f}\left(x,b_{\perp}\right)}{\int d^{2}b_{\perp}q_{f}\left(x,b_{\perp}\right)}=-4\frac{\partial}{\partial t}\log H^{f}\left(x,\xi=0,t\right)\bigg|_{t=0}$$

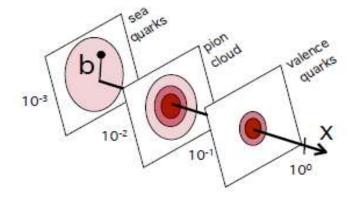
$$\left\langle b_{\perp}^{2}(x)\right\rangle \approx2B\left(\xi\right)$$



COMPASS 12-16 Transverse extention of partons in the sea quark range

$$d\sigma^{DVCS}/dt = e^{-B|t|} = c_0^{DVCS} \propto (Im\mathcal{H})^2$$

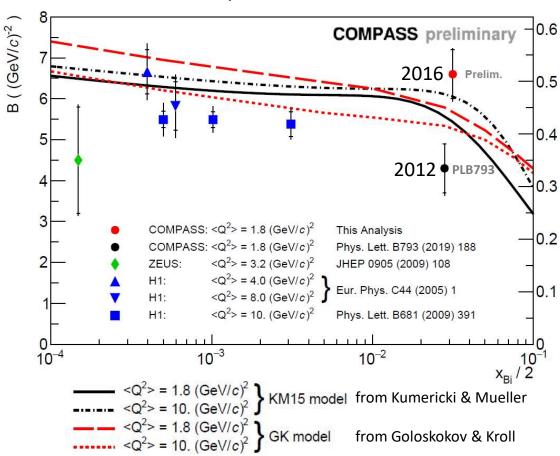
$$\left\langle b_{\perp}^{2}(x)\right\rangle pprox2B\left(\xi\right)$$



 3σ difference between 2012 and 2016 data

- > more advanced analysis with 2016 data
- $\triangleright \pi^0$ contamination with different thresholds
- \triangleright binning with 3 variables (t,Q²,v) or 4 variables (t, ϕ ,Q²,v)

2012 statistics = Ref 2016 analysed statistics = $2.3 \times \text{Ref}$ 2016+2017 expected statistics = $10 \times \text{Ref}$

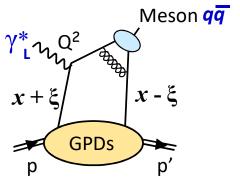


GPDs and Hard Exclusive Meson Production

Factorisation proven only for σ_L

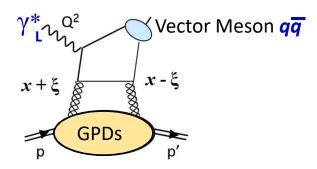
4 chiral-even GPDs: helicity of parton unchanged

Quark contribution



 $\mathbf{H}^q(x, \xi, t)$ $\mathbf{E}^q(x, \xi, t)$ (as Sivers with OAM) For Vector Meson $\widetilde{\mathbf{H}}^q(x, \xi, t)$ $\widetilde{\mathbf{E}}^q(x, \xi, t)$ For Pseudo-Scalar Meson

Gluon contribution at the same order in α_{s}



+ Non-perturbative Meson wave function

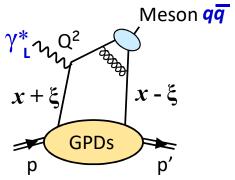
$$\rho^{0} = \left[|u\overline{u}\rangle - |d\overline{d}\rangle \right] / \sqrt{2}$$

$$\omega = \left[|u\overline{u}\rangle + |d\overline{d}\rangle \right] / \sqrt{2}$$

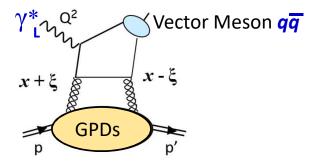
GPDs and Hard Exclusive Meson Production

Factorisation proven only for σ_i

Quark contribution



Gluon contribution at the same order in α_s



+ Non-perturbative Meson wave function

$$\rho^{0} = \left[|u\overline{u}\rangle - |d\overline{d}\rangle \right] / \sqrt{2}$$

$$\omega = \left[|u\overline{u}\rangle + |d\overline{d}\rangle \right] / \sqrt{2}$$

4 chiral-even GPDs: helicity of parton unchanged

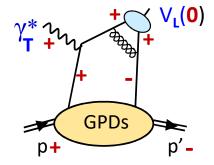
$$\mathbf{H}^q(x, \xi, t)$$
 $\mathbf{E}^q(x, \xi, t)$ (as Sivers with OAM) For Vector Meson $\widetilde{\mathbf{H}}^q(x, \xi, t)$ $\widetilde{\mathbf{E}}^q(x, \xi, t)$ For Pseudo-Scalar Meson

+ 4 chiral-odd or transversity GPDs: helicity of parton changed (not possible in DVCS)

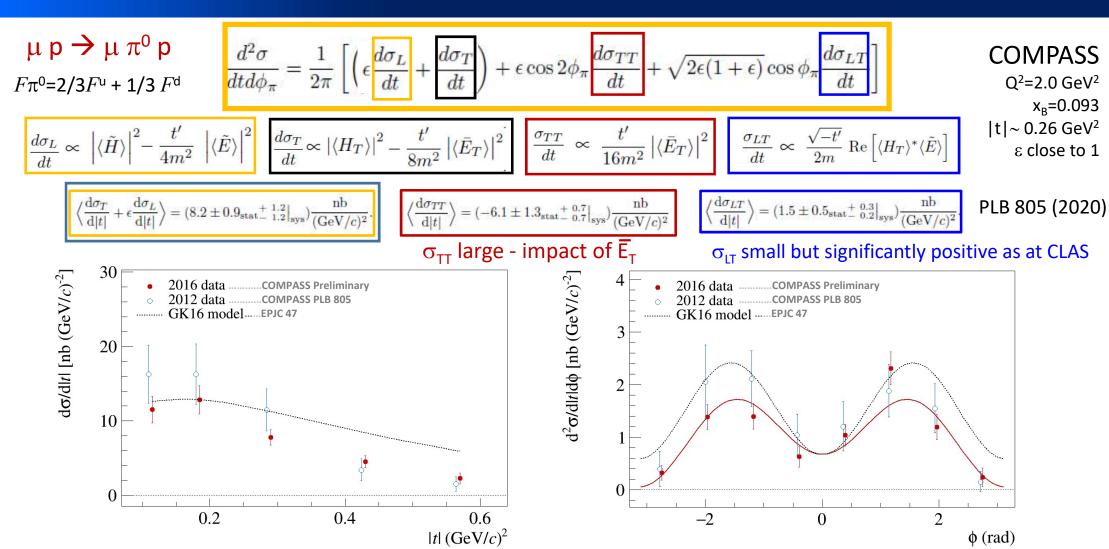
$$H_T^q(x, \xi, t)_{\text{versity}}^{\text{(as trans-}} E_T^q(x, \xi, t)$$
 $\widetilde{H}_T^q(x, \xi, t) \widetilde{E}_T^q(x, \xi, t)$
 $\widetilde{E}_T^q(x, \xi, t) = \widetilde{E}_T^q(x, \xi, t)$
 $\widetilde{E}_T^q(x, \xi, t) = \widetilde{E}_T^q(x, \xi, t)$
 $\widetilde{E}_T^q(x, \xi, t) = \widetilde{E}_T^q(x, \xi, t)$
(as Boer-Mulders)

 σ_T is asymptotically suppressed by $1/Q^2$ but large contribution observed GK model: k_T of q and \overline{q} and Sudakov suppression factor are considered

$$\mathfrak{I}^{\gamma^*_{\mathsf{T}}} \to \mathsf{V}_{\mathsf{L}}$$
 sensitive to $\mathsf{H}^q_{\mathsf{T}}$ and to a twist-3 meson wave function



COMPASS 2012 - 16 Exclusive π^0 production on unpolarized proton



Data: COMPASS, PLB 805 (2020) Models: GK Kroll Goloskokov EPJC47 (2011) Also GGL: Golstein Gonzalez Liuti PRD91 (2015)

COMPASS 2010 HEMP with Transversely Polarized Target without RPD

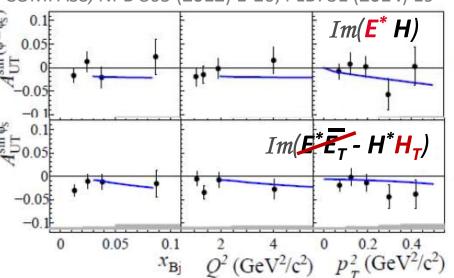
Gparity: $G(\pi)=-1$; $G(\rho)=+1$; $G(\omega)=-1$

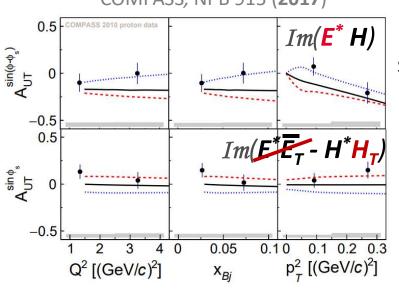
$$E_{\rho^0} \to \pi^+ \pi^-$$

$$E_{\rho^0} = \frac{1}{\sqrt{2}} (\frac{2}{3} E^u + \frac{1}{3} E^d + \frac{3}{4} \frac{E_g}{x})$$

 $0 \rightarrow \pi^+\pi^- \pi^0$ $E_{\omega} = \frac{1}{\sqrt{2}} (\frac{2}{3} E^{u} - \frac{1}{3} E^{d} + \frac{1}{4} \frac{E_{g}}{\kappa})$

COMPASS, NPB 865 (2012) 1-20, PLB731 (2014) 19

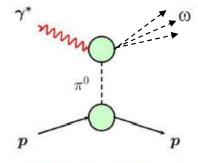




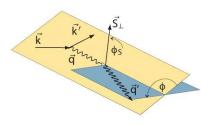
 $E^{\rm u}$ and $E^{\rm d}$ of opposite sign ω is more promising (see the larger scale) but there is the inherent pion pole contribution

$$\Gamma(\omega \to \pi^0 \gamma) = 9 \times \Gamma(\rho^0 \to \pi^0 \gamma)$$

Same for $\pi\omega$ FF but sign unknown

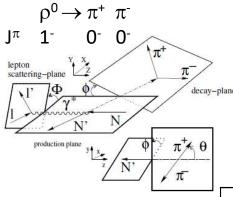


- positive $\pi\omega$ form factor
- no pion pole
- negative $\pi\omega$ form factor



GK Goloskokov, Kroll, EPJC42,50,53,59,65,74 GPD model constrained by HEMP at small x_B longitudinal $\gamma_1^* p \rightarrow M p$ and transv. polar. $\gamma_T^* p \rightarrow M p$ quark and gluon contributions (GPDs H, E, H_T, E_T) and beyond leading twist

exclusive VM production with Unpolarised Target and SDME



experimental angular distributions:

$$\mathcal{W}^{U+L}(\Phi, \phi, \cos \Theta) = \mathcal{W}^{U}(\Phi, \phi, \cos \Theta) + P_b \mathcal{W}^{L}(\Phi, \phi, \cos \Theta)$$

Im r₁₋₁²

Re r₁₀
Im r₁₀

Im r10

Re r₁₀
Re r₁₀
Re r₁₀

Im r₁₀

Im r₁₀

Im r₁₋₁

r₁₁

-0.2

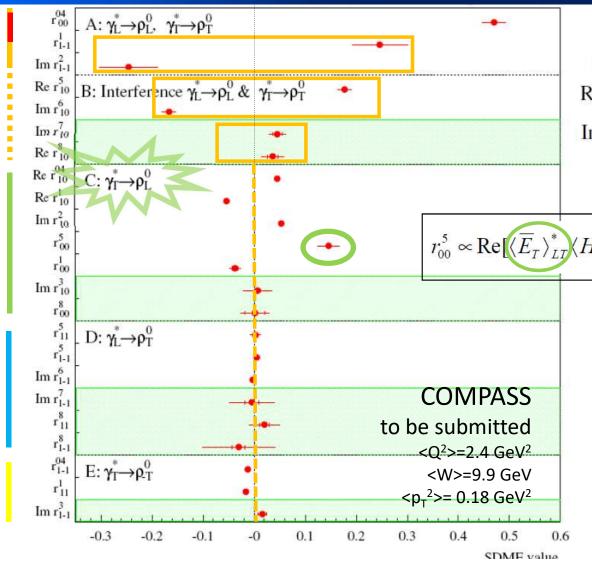
 $\gamma_L^* \to V_L$ $\& \gamma_T^* \to V_T$

15 'unpolarized' and 8 'polarized' SDMEs

$$\begin{split} \mathcal{W}^{U}(\Phi,\phi,\cos\Theta) &= \frac{3}{8\pi^{2}} \left[\frac{1}{2} (1-r_{00}^{04}) + \frac{1}{2} (3r_{00}^{04}-1)\cos^{2}\Theta - \sqrt{2}\text{Re}\{r_{10}^{04}\}\sin 2\Theta\cos\phi - r_{1-1}^{04}\sin^{2}\Theta \right. \\ &- \epsilon\cos 2\Phi\left(r_{11}^{1}\sin^{2}\Theta + r_{00}^{1}\cos^{2}\Theta - \sqrt{2}\text{Re}\{r_{10}^{1}\}\sin 2\Theta\cos\phi - r_{1-1}^{1}\sin^{2}\Theta\cos 2\phi\right) \\ &- \epsilon\sin 2\Phi\left(\sqrt{2}\text{Im}\{r_{10}^{2}\}\sin 2\Theta\sin\phi + \text{Im}\{r_{1-1}^{2}\}\sin^{2}\Theta\sin 2\phi\right) \\ &+ \sqrt{2\epsilon(1+\epsilon)}\cos\Phi\left(r_{11}^{5}\sin^{2}\Theta + r_{00}^{5}\cos^{2}\Theta - \sqrt{2}\text{Re}\{r_{10}^{5}\}\sin 2\Theta\cos\phi - r_{1-1}^{5}\sin^{2}\Theta\cos 2\phi\right) \\ &+ \sqrt{2\epsilon(1+\epsilon)}\sin\Phi\left(\sqrt{2}\text{Im}\{r_{10}^{6}\}\sin 2\Theta\sin\phi + \text{Im}\{r_{1-1}^{6}\}\sin^{2}\Theta\sin 2\phi\right) \\ &+ \sqrt{2\epsilon(1+\epsilon)}\cos\Phi\left(\sqrt{2}\text{Im}\{r_{10}^{3}\}\sin 2\Theta\sin\phi + \text{Im}\{r_{1-1}^{3}\}\sin^{2}\Theta\sin 2\phi\right) \\ &+ \sqrt{2\epsilon(1-\epsilon)}\cos\Phi\left(\sqrt{2}\text{Im}\{r_{10}^{7}\}\sin 2\Theta\sin\phi + \text{Im}\{r_{1-1}^{7}\}\sin^{2}\Theta\sin 2\phi\right) \\ &+ \sqrt{2\epsilon(1-\epsilon)}\sin\Phi\left(r_{11}^{8}\sin^{2}\Theta + r_{00}^{8}\cos^{2}\Theta - \sqrt{2}\text{Re}\{r_{10}^{8}\}\sin 2\Theta\cos\phi - r_{1-1}^{8}\sin^{2}\Theta\cos 2\phi\right) \\ &+ \sqrt{2\epsilon(1-\epsilon)}\sin\Phi\left(r_{11}^{8}\sin^{2}\Theta + r_{00}^{8}\cos^{2}\Theta - \sqrt{2}\text{Re}\{r_{10}^{8}\}\sin 2\Theta\cos\phi - r_{1-1}^{8}\sin^{2}\Theta\cos 2\phi\right) \\ \end{bmatrix} \end{split}$$

 ϵ close to 1, small \mathcal{W}^{L} no L/T separation

Exclusive ρ^0 production on unpolarized proton



If SCHC $(\lambda_y = \lambda_V)$

$$r_{1-1}^1 + \operatorname{Im}\{r_{1-1}^2\} = 0$$

$$\operatorname{Re}\{r_{10}^5\} + \operatorname{Im}\{r_{10}^6\} = 0$$

$$\operatorname{Im}\{r_{10}^7\} - \operatorname{Re}\{r_{10}^8\} = 0$$

measurements:

$$= 0.000 \pm 0.005 \pm 0.003$$

$$= 0.011 \pm 0.002 \pm 0.002$$

$$= 0.009 \pm 0.014 \pm 0.028$$

All the other SDME in classes C,D, E should be 0 not observed for class C

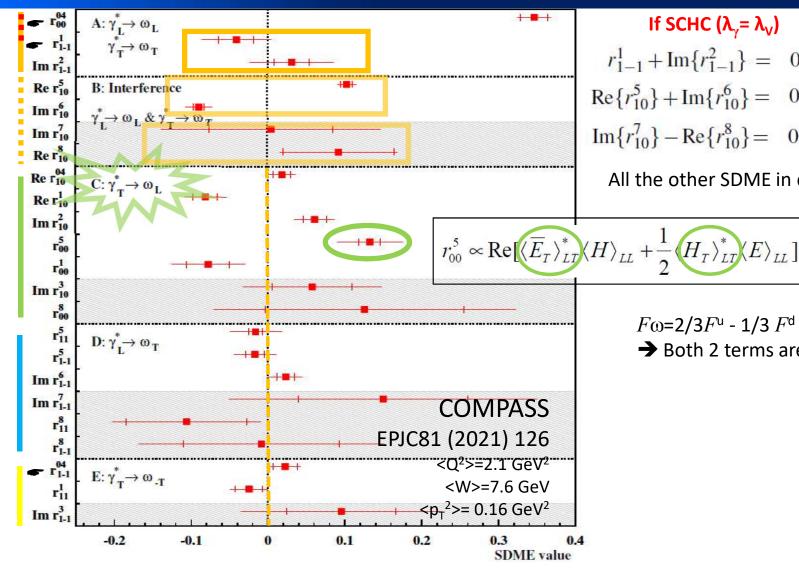
 $r_{00}^{5} \propto \text{Re}\left[\langle \overline{E}_{T} \rangle_{LT}^{*} \langle H \rangle_{LL} + \frac{1}{2} \langle H_{T} \rangle_{LT}^{*} \langle E \rangle_{LL}\right]$ From Goloskokov and Kroll, EPJC74 (2014) 2725

$$F\rho^0 = 2/3F^u + 1/3F^d$$

ightharpoonup The first term dominates and r_{00}^5 probes \overline{E}_T

 $(H^{\rm u}, H^{\rm d})$ of same sign $(\bar{E}_{\rm T}^{\rm u}, \bar{E}_{\rm T}^{\rm d})$ of same sign $(H_{\rm T}^{\rm u}, H_{\rm T}^{\rm d})$ of opposite sign $(E^{\rm u}, E^{\rm d})$ of opposite sign

Exclusive ω production on unpolarized proton



If SCHC
$$(\lambda_y = \lambda_V)$$

$$r_{1-1}^1 + \operatorname{Im}\{r_{1-1}^2\} = 0$$

$$\operatorname{Re}\{r_{10}^5\} + \operatorname{Im}\{r_{10}^6\} = 0$$

$$\operatorname{Im}\{r_{10}^7\} - \operatorname{Re}\{r_{10}^8\} = 0$$

measurements:

$$= -0.010 \pm 0.032 \pm 0.047$$

$$= 0.014 \pm 0.011 \pm 0.013$$

$$= -0.088 \pm 0.110 \pm 0.196$$

All the other SDME in classes C,D, E should be 0 not observed for class C

> From Goloskokov and Kroll, EPJC74 (2014) 2725

$$F\omega = 2/3F^{u} - 1/3 F^{d}$$

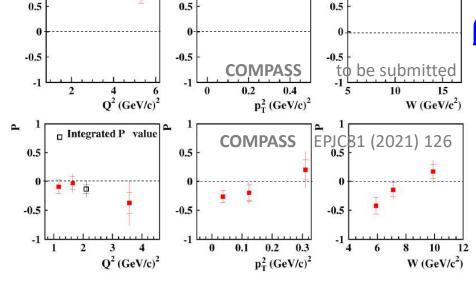
→ Both 2 terms are important

 $(H^{\rm u}, H^{\rm d})$ of same sign $(\overline{E_{T}^{u}}, \overline{E_{T}^{d}})$ of same sign $(H_T^{\rm u}, H_T^{\rm d})$ of opposite sign $(E^{\rm u}, E^{\rm d})$ of opposite sign

Comparison ω and ρ^0 production

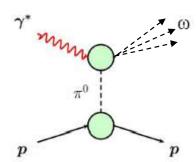
Natural (N) to Unatural (U) Parity Exchange for $\gamma_T^* \to V_T$

$$P = \frac{2r_{1-1}^{1}}{1 - r_{00}^{04} - 2r_{1-1}^{04}} \approx \frac{d\sigma_{T}^{N}(\gamma_{T}^{*} \to V_{T}) - d\sigma_{T}^{U}(\gamma_{T}^{*} \to V_{T})}{d\sigma_{T}^{N}(\gamma_{T}^{*} \to V_{T}) + d\sigma_{T}^{U}(\gamma_{T}^{*} \to V_{T})}$$

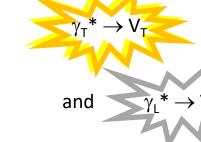


The pion pole exchange (UPE) is large for ω compared to ρ^0

 $\Gamma(\omega \to \pi^0 \gamma) = 9 \times \Gamma(\rho^0 \to \pi^0 \gamma)$ as for π^0 Vector Meson FF



It plays an important role in ω production for:



- P^0 : P~1 \rightarrow NPE dominance P~1 NPE with GPDs H, E
- **(**): P~0 → NPE ~ UPE

 UPE dominance at small W and p_T^2 UPE with GPDs \widetilde{H} , \widetilde{E} and the dominant pion pole

COMPASS 2012 $R = \sigma_L/\sigma_T$ for exclusive ρ^0 production



Deviation from the pQCD LO prediction in Q²/M_{ρ}²: QCD evolution and q_T Transversize size effects of the meson smaller for σ_L than for σ_T

COMPASS 2016+17

Outlook for DVCS and HEMP

- ✓ DVCS and the sum $\Sigma = d\sigma^{+} + d\sigma^{-}$
 - \rightarrow c_0 and s_1 and constrain on $Im\mathcal{H}$ and Transverse extension of partons
- ✓ DVCS and the difference $\Delta = d\sigma^{+} d\sigma^{-}$
 - \rightarrow c_1 and constrain on $Re\mathcal{H}$ (>0 as H1 or <0 as HERMES)

for D-term and pressure distribution

✓ On-going analysis (Cross section, SDME) for HEMP of π^0 , ρ^0 , ω , ϕ , J/ ψ

- √ Gluon GPDs
- √ Flavor decomposition

COMPASS 2016+17

Outlook for DVCS and HEMP

- ✓ DVCS and the sum $\Sigma = d\sigma^{+} + d\sigma^{-}$
 - \rightarrow c_0 and s_1 and constrain on $Im\mathcal{H}$ and Transverse extension of partons

For Jlab 20+ GeV

- ✓ DVCS and the difference $\Delta = d\sigma^{+} d\sigma^{-}$
 - \rightarrow c_1 and constrain on $\text{Re}\mathcal{H}$ (>0 as H1 or <0 as HERMES) Importance of e⁺ beam for D-term and pressure distribution
- ✓ On-going analysis (Cross section, SDME) for HEMP of π^0 , ρ^0 , ω , ϕ , J/ ψ

- √ Gluon GPDs
- √ Flavor decomposition

Importance of large luminosity For DVCS, TCS, DDVCS, J/ψ ...