Hard Exclusive Reactions at COMPASS at CERN Exclusive photon (DVCS) and meson (HEMP) production at small transfer for GPD studies

Nicole d'Hose – CEA – Université Paris-Saclay for the COMPASS Collaboration

DVCS: $\mu p \rightarrow \mu' p' \gamma$ μ μ'

Pseudo-Scalar Meson : μ **p** \rightarrow μ' **p**' π^0 Markéta Pešková's talk today at 12:05

Vector Meson : $\mu p \rightarrow \mu' p' \rho \text{ or } \omega \text{ or } \dots$

Measurement of exclusive cross sections at COMPASS

CAMERA recoil proton detector surrounding the 2.5m long LH2 target

ET UI

ECALO

DVCS: μ $p \rightarrow \mu' p \gamma$ μ' μ'

+ SIDIS on unpolarized protons

2012: 1 month pilot run

2016 -17: 2 x 6 month data taking

D. Mueller *et al*, Fortsch. Phys. 42 (1994)
X.D. Ji, PRL 78 (1997), PRD 55 (1997)
A. V. Radyushkin, PLB 385 (1996), PRD 56 (1997)

DVCS: $\ell p \rightarrow \ell' p' \gamma$ the golden channel because it interferes with the Bethe-Heitler process

also meson production $\ell p \rightarrow \ell' p' \pi, \rho, \omega \text{ or } \phi \text{ or } J/\psi...$

The GPDs depend on the following variables:

x: average

ξ: transferred

 quark longitudinal momentum fraction

t: proton momentum transfer squared related to b₁ via Fourier transform

The variables measured in the experiment:
$$\begin{split} & E_{\ell}, \ Q^2, \ x_{\rm B} \sim 2\xi \ /(1+\xi), \\ & t \ (or \ \theta_{\gamma^*\gamma}) \ and \ \phi \ (\ensuremath{\ell\ell}\ \ensuremath{\ell}\ \ensuremath{\rho}\ \ensuremath{\phi}\ \ensuremath{\rho}\ \ensuremath{\phi}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\phi}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\phi}\ \ensuremath{\phi}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\phi}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\phi}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\phi}\ \ensuremath{\phi}\ \ensuremath{\rho}\ \ensuremath{\phi}\ \ensuremath{\phi}\$$

The amplitude DVCS at LT & LO in α_s (GPD **H**) : **Real part Imaginary part** $\mathcal{H} = \int_{t, \xi \text{ fixed}}^{+1} dx \ \frac{H(x, \xi, t)}{x - \xi + i\varepsilon} = \mathcal{P} \int_{-1}^{+1} dx \ \frac{H(x, \xi, t)}{x - \xi} - i \ \pi \ H(x = \pm \xi, \xi, t)$ In an experiment we measure

Compton Form Factor ${\cal H}$

$$\mathcal{R}e\mathcal{H}(\xi,t) = \pi^{-1} \int_0^1 dx \ \frac{2x \ Im\mathcal{H}(x,t)}{x^2 - \xi^2} + \Delta(t)$$

M. Burkardt, PRD66(2002)

M. Polyakov, P. Schweitzer, Int.J.Mod.Phys. A33 (2018)

6

With unpolarized target:

Belitsky, Müller, Kirner, NPB629 (2002)

D

(+,-)

HQ2

D

 $\gamma_{(+)}$

Twist-3 suppressed by 1/Q

GPDs

Twist-2, NLO

double helicity flip suppressed by α_s

$$\begin{aligned} d\sigma^{BH} &\propto c_0^{BH} + c_1^{BH} \cos \phi + c_2^{BH} \cos 2\phi \\ d\sigma^{DVCS}_{unpol} &\propto c_0^{DVCS} + c_1^{DVCS} \cos \phi + c_2^{DVCS} \cos 2\phi \\ d\sigma^{DVCS}_{pol} &\propto s_1^{DVCS} \sin \phi \\ \text{Re } I &\propto c_0^I + c_1^I \cos \phi + c_2^I \cos 2\phi + c_3^I \cos 3\phi \\ \text{Im } I &\propto s_1^I \sin \phi + s_2^I \sin 2\phi \end{aligned}$$

 α_{s} suppressed

With both μ^{+} and μ^{-} beams we can build:

• beam charge-spin sum $\Sigma \equiv d\sigma \stackrel{+}{\leftarrow} + d\sigma \stackrel{-}{\rightarrow}$

$$\begin{aligned} d\sigma^{BH} &\propto c_0^{BH} + c_1^{BH} \cos \phi + c_2^{BH} \cos 2\phi \\ d\sigma^{DVCS}_{unpol} &\propto c_0^{DVCS} + c_1^{DVCS} \cos \phi + c_2^{DVCS} \cos 2\phi \\ d\sigma^{DVCS}_{pol} &\propto s_1^{DVCS} \sin \phi \\ \text{Re } I &\propto c_0^I + c_1^I \cos \phi + c_2^I \cos 2\phi + c_3^I \cos 3\phi \\ \text{Im } I &\propto s_1^I \sin \phi + s_2^I \sin 2\phi \end{aligned}$$

 $\gamma_{(+)}$ GPDs Twist-3 suppressed by 1/Qγ* ⁴ ^{Q2} (+,-) ⁴ $\gamma_{(+)}$ **GPDs** Twist-2, NLO double helicity flip suppressed by α_s

GPDs

With both μ^{+} and μ^{-} beams we can build:

• beam charge-spin sum	$\mathrm{d}\sigma^{BH}$	\propto	$c_0^{BH} + c_1^{BH} \cos \phi + c_2^{BH} \cos 2\phi$	Twist-3
$\Sigma = d\sigma \stackrel{+}{\leftarrow} + d\sigma \stackrel{-}{\rightarrow}$	$\mathrm{d}\sigma^{DVCS}_{unpol}$	œ	$c_0^{DVCS} + c_1^{DVCS} \cos \phi + c_2^{DVCS} \cos 2\phi$	$\gamma^*_{(1)} \chi^{Q^2}_{Q^2} \chi^{\gamma}_{(1)} \gamma_{(1)}$
a difference	$\mathrm{d}\sigma^{DVCS}_{pol}$	α	$s_1^{DVCS} \sin \phi$	(+,-) ' \ (+)
	Re I	\propto	$c_0^I + c_1^I \cos \phi + c_2^I \cos 2\phi + c_3^I \cos 3\phi$	GPDs
$\Delta \equiv d\sigma - d\sigma$	Im I	\propto	$s_1^I \sin \phi + s_2^I \sin 2\phi$	p Twist-2, NLO
$s_1^I \propto Im \mathbf{\mathcal{F}} c_1^I \propto Re \mathbf{\mathcal{F}}$	$\boldsymbol{F}=\boldsymbol{F}_{1}\boldsymbol{\mathcal{I}}$	4 +	$\xi(F_1 + F_2)\mathcal{H} - t/4m^2 F_2 \mathcal{E}^{\text{for proton}} F_1 \mathcal{H}$	double helicity flip suppressed by α _s

COMPASS 2016 data Selection of exclusive single photon production

angle

track

Entries

50 -

Comparison between the observables given by the spectro or by CAMERA

DVCS : $\mu p \rightarrow \mu' p \gamma$

- $\Delta arphi = arphi^{ ext{cam}}$ $arphi^{ ext{spec}}$
- 2) $\Delta p_T = p_T^{cam} p_T^{spec}$
- 3) $\Delta z_A = z_A^{\text{cam}} z_A^{Z_B \text{ and vertex}}$

4)
$$M^{2}_{X=0} = (p_{\mu_{in}} + p_{p_{in}} - p_{\mu_{out}} - p_{p_{out}} - p_{\gamma})^{2}$$

Good agreement between $\vec{\mu}$ and $\vec{\mu}$ yields Important achievement for:

1 $\Sigma \equiv d\sigma \stackrel{+}{\leftarrow} + d\sigma \stackrel{-}{\rightarrow}$ Easier, done first **2** $\Lambda \equiv d\sigma \stackrel{+}{\leftarrow} - d\sigma \stackrel{-}{\rightarrow}$ Challenging, but promising

COMPASS 2016 data

DVCS+BH cross section at E μ =160 GeV

 π° background contribution from SIDIS (LEPTO) + exclusive production (HEPGEN)

COMPASS 2016 DVCS cross section for 10 < ບ < 32 GeV

At COMPASS using polarized positive and negative muon beams:

$$S_{cs,\nu} \equiv d\sigma \stackrel{+}{\leftarrow} + d\sigma \stackrel{-}{\rightarrow} = 2[d\sigma^{BH} + d\sigma^{DVCS}_{unpol} + \operatorname{Im} I]$$

= $2[d\sigma^{BH} + (c_0^{DVCS}) + c_1^{DVCS} \cos \phi + c_2^{DVCS} \cos 2\phi + s_1^I \sin \phi + s_2^I \sin 2\phi]$

calculable can be subtracted

All the other terms are cancelled in the integration over ϕ

$$\frac{\mathrm{d}^3 \sigma^{\mu p}_{\mathrm{T}}}{\mathrm{d}Q^2 \mathrm{d}\nu dt} = \int_{-\pi}^{\pi} \mathrm{d}\phi \, \left(\mathrm{d}\sigma - \mathrm{d}\sigma^{BH}\right) \propto c_0^{DVCS}$$

$$\frac{\mathrm{d}\sigma^{\gamma^* p}}{\mathrm{d}t} = \frac{1}{\Gamma(Q^2, \nu, E_{\mu})} \frac{\mathrm{d}^3 \sigma_{\mathrm{T}}^{\mu p}}{\mathrm{d}Q^2 \mathrm{d}\nu dt}$$

Flux for transverse virtual photons

COMPASS 2016 Transverse extention of partons in the sea quark range

COMPASS 2016 Transverse extention of partons in the sea quark range

binning with 3 variables (t,Q^2,v) or 4 variables (t,ϕ,Q^2,v)

___ 0.5 ♀ 2016 **Prelim** 0.4 2012 0.3 This Analysis 0.2 Phys. Lett. B793 (2019) 188 JHEP 0905 (2009) 108 Eur. Phys. C44 (2005) 1 0.1 Phys. Lett. B681 (2009) 391 10⁻¹ x_{Bi} / 2 10⁻² $<Q^2> = 1.8 (GeV/c)^2$ $<Q^2> = 10. (GeV/c)^2$ KM15 model from Kumericki & Mueller $<Q^{2}> = 1.8 (GeV/c)^{2}$ from Goloskokov & Kroll $<Q^2> = 10. (GeV/c)^2$ 15

لی₂ 6.0

GPDs and Hard Exclusive Meson Production

Factorisation proven only for $\sigma_{\!\scriptscriptstyle L}$

Quark contribution

Gluon contribution at the same order in α_s

The meson wave function Is an additional non-perturbative term 4 chiral-even GPDs: helicity of parton unchanged

$\mathbf{H}^{q}(x, \xi, t)$	$\mathbf{E}^{q}(\boldsymbol{x}, \boldsymbol{\xi}, \mathbf{t}) \stackrel{(as Sivers}{\text{with OAM}}$	For Vector Meson
$\widetilde{H}^q(x, {\boldsymbol{\xi}}, { extsf{t}})$	$\widetilde{\mathbf{E}}^q(x, \xi, t)$ For P	seudo-Scalar Meson

+ 4 chiral-odd or transversity GPDs: helicity of parton changed (not possible in DVCS)

$$\begin{array}{l} \mathbf{H}_{T}^{q}(x,\xi,t) \stackrel{(\text{as trans-})}{\text{versity}} & \mathbf{E}_{T}^{q}(x,\xi,t) \\ \widetilde{\mathbf{H}}_{T}^{q}(x,\xi,t) & \widetilde{\mathbf{E}}_{T}^{q}(x,\xi,t) \end{array} \qquad \begin{array}{l} \mathbf{E}_{T}^{q}(x,\xi,t) \\ \widetilde{\mathbf{E}}_{T}^{q}(x,\xi,t) & \widetilde{\mathbf{E}}_{T}^{q}(x,\xi,t) \end{array} \qquad \begin{array}{l} \mathbf{E}_{T}^{q}(x,\xi,t) \\ (\text{as Boer-Mulders}) \end{array}$$

 σ_{T} is asymptotically suppressed by $1/Q^2$ but large contribution observed GK model: k_{T} of q and \overline{q} and Sudakov suppression factor are considered

 \mathfrak{M} sensitive to \mathbb{H}^{q}

and to a twist-3 meson wave function

COMPASS 2010 HEMP with Transversely Polarized Target without RPD

GK Goloskokov, Kroll, EPJC42,50,53,59,65,74 GPD model constrained by HEMP at small x_B longitudinal $\gamma_L^* p \rightarrow M p$ and transv. polar. $\gamma_T^* p \rightarrow M p$ quark and gluon contributions (GPDs H, E, H_T, E_T) and beyond leading twist

exclusive VM production with Unpolarised Target and SDME

COMPASS 2012 Exclusive ρ^0 production on unpolarized proton

COMPASS 2012

Exclusive @ production on unpolarized proton

Comparison ω and ρ^0 production

COMPASS 2012

0

 $Q^2 (GeV/c)^2$

0.1

0.2

 $p_T^2 (GeV/c)^2$

0.3

The pion pole exchange (UPE) is large for ω compared to ρ^0

 $\Gamma(\omega \to \pi^0 \gamma) = 9 \times \Gamma(\rho^0 \to \pi^0 \gamma)$ as for the transition $\pi^0 V FF$ Natural (N) to Unatural (U) Parity Exchange for $\gamma_T^* \rightarrow V_T$ It plays an important role in ω production for: $P = \frac{2r_{1-1}^{1}}{1 - r_{00}^{04} - 2r_{1-1}^{04}} \approx \frac{d\sigma_{T}^{N}(\gamma_{T}^{*} \to V_{T}) - d\sigma_{T}^{U}(\gamma_{T}^{*} \to V_{T})}{d\sigma_{T}^{N}(\gamma_{T}^{*} \to V_{T}) + d\sigma_{T}^{U}(\gamma_{T}^{*} \to V_{T})}$ and 0.5 0.5 0.5 ➔ NPE dominance P~1 NPE with GPDs H, E to be submitted -0.5 -0.5 COMPASS 0.2 04 $Q^2 (GeV/c)^2$ $p_T^2 (GeV/c)^2$ W (GeV/c²) Ч □ Integrated P value EPJCβ1 (2021) 126 COMPASS 0.5 0.5 \bigcirc : P~0 \rightarrow NPE ~ UPE UPE dominance at small W and p_T^2 亩 UPE with GPDs \tilde{H}, \tilde{E} and the dominant pion pole -0.5 -0.5 -0.5

10

 $W (GeV/c^2)$

COMPASS 2012 $R = \sigma_L / \sigma_T$ for exclusive ρ^0 production

COMPASS to be submitted Deviation from the pQCD LO prediction in Q^2/M_{ρ}^2 : QCD evolution and q_T Transversize size effects of the meson smaller for σ_L than for σ_T

COMPASS 2016+17 Outlook for DVCS and HEMP

✓ DVCS and the sum $\sum = d\sigma + d\sigma$

 $rightarrow c_0$ and s_1 and constrain on Im \mathcal{H} and Transverse extension of partons

- ✓ DVCS and the difference $\Delta = d\sigma \stackrel{+}{\leftarrow} d\sigma \stackrel{-}{\rightarrow}$
 - $\rightarrow c_1$ and constrain on Re \mathcal{H} and D-term and pressure distribution

 \checkmark On-going analysis (Cross section, SDME) for HEMP of $\,\pi^{0},\,\rho^{0},\,\omega,\,\phi,\,J/\psi$

- ✓ Transversity GPDs
- ✓ Gluon GPDs
- ✓ Flavor decomposition

Muons

80 < v [GeV] < 144

Photon - Ecal2 (Bethe-Heitler)

80 < v [GeV] < 144

Proton

GPDs and Hard Exclusive Meson Production

Factorisation proven only for σ_L The meson wave function is an additional non-perturbative term

Quark contribution

Gluon contribution at the same order in α_{s}

4 chiral-even GPDs: helicity of parton unchanged

$\mathbf{H}^{q}(x, \xi, t)$	$\mathbf{E}^{q}(x, \xi, t)$ (as Sivers with OAM)	For Vector Meson
$\widetilde{H}^q(x,\xi,t)$	$\widetilde{\mathbf{E}}^q(x, \xi, t)$ For P	seudo-Scalar Meson

Flavor decomposition (val and sea quarks and gluons) Diehl, Vinnikov

PLB 609 (2005)

$F_{\rho^0} = \frac{1}{\sqrt{2}} \left(\frac{2}{3}F^u + \frac{1}{3}F^d + \frac{3}{8}\frac{F_g}{x}\right)$
$F_{\omega} = \frac{1}{\sqrt{2}} \left(\frac{2}{3}F^{u} - \frac{1}{3}F^{d} + \frac{1}{8}\frac{F_{g}}{x}\right)$
$F_{\phi} = -\frac{1}{3}F^s - \frac{1}{8}\frac{F_g}{x}.$

F for H, E ... \checkmark H^u H^d of same sign $\sigma_{L} (\rho^{0}) \sim 9 \times \sigma_{L} (\omega)$ with Unpol Target \checkmark E^u E^d of opposite sign $A_{UT}^{\sin(\phi-\phi_{s})} \sim \operatorname{Im}[\langle E \rangle^{*} \langle H \rangle]$ $A_{UT}^{\sin(\phi-\phi_{s})} (\omega) > A_{UT}^{\sin(\phi-\phi_{s})}(\rho^{0})$ with Trans Pol Target

Access to the GPD E with transversely polarized target with DVCS on the proton or Vect Meson - OR - DVCS off the neutron

the Holy Grail with E: to reveal OAM **Ji:** $2J^q = \int x (H^q(x,\xi,0) + E^q(x,\xi,0)) dx$

COMPASS 2016 data

π^0 background estimation

 π^0 are one of the main background sources for excl. photon events.

Two possible case:

• Visible (both γ detected \rightarrow subtracted)

the exclusive single photon candidate is combined with all detected photons below the DVCS threshold: 4,5 GeV in ECAL0, 1

- Invisible (one γ lost \rightarrow estimated by MC)
 - Semi-inclusive LEPTO 6.1
 - > Exclusive HEPGEN π^0
 - (Goloskokov-Kroll model)

Comparing the two components to the data allows the determination of their relative normalisation.

 $r_{\text{LEPTO}}=40\pm10\%$ The sum of the 2 components is normalized to the visible π^0 contamination in the $M_{\gamma\gamma}$ peak

COMPASS 2016 DVCS cross section for 10 < υ < 32 GeV

COMPASS 2016 BH+DVCS cross section at Eµ=160 GeV

At COMPASS using polarized positive and negative muon beams:

8 GPDs in parallel of 8 TMDs

		Quark Polarization				
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)		
_	υ	Н		$\overline{E}_{T} = 2\widetilde{H}_{T} + E_{T}$		
larizatior	L		\widetilde{H}	\widetilde{E}_{T}		
Nucleon Pol	т	Ε	\widetilde{E}	H_T \widetilde{H}_T		

For valence contributions:

 $H^{u} H^{d}$ of **same** sign $\widetilde{H}^{u} \widetilde{H}^{d}$ of opposite sign $H_{T}^{u} H_{T}^{d}$ of opposite sign $\begin{array}{l} E^{u} \ E^{d} \ of \ opposite \ sign \\ \widetilde{\underline{E}}^{u} \ \widetilde{\underline{E}}^{d} \ of \ opposite \ sign \\ \overline{\underline{E}}_{T}^{u} \ \overline{\underline{E}}_{T}^{d} \ of \ same \ sign \end{array}$

GPDs and TMDs

Chiral-even

 $\vec{E}_{T} = 2\vec{H}_{T} + \vec{E}_{T} + \vec{E}_{T} + \vec{E}_{T}$

Sivers: quark k_T and nucleon transv. Spin

T-odd

Transversity: quark spin and nucleon transv. spin

Boer-Mulders: quark k_T and quark transverse spin

T-odd

$$F_{\rho^{0}} = \frac{1}{\sqrt{2}} \left(\frac{2}{3}F^{u} + \frac{1}{3}F^{d} + \frac{3}{8}\frac{F_{g}}{x}\right)$$

$$F_{\omega} = \frac{1}{\sqrt{2}} \left(\frac{2}{3}F^{u} - \frac{1}{3}F^{d} + \frac{1}{8}\frac{F_{g}}{x}\right)$$

$$F_{\phi} = -\frac{1}{3}F^{s} - \frac{1}{8}\frac{F_{g}}{x}.$$

Eta and pi0 At JLab

FIG. 8. The two-photon invariant-mass distribution $M_{\gamma\gamma}$ after all exclusivity cuts have been applied, for the case where the two photons are detected by the IC. The large peak at lower $M_{\gamma\gamma}$ is due to π^0 electroproduction and the smaller peak at higher $M_{\gamma\gamma}$ is due to η electroproduction. The inset magnifies the region around the η peak.

CLAS η data & GK fits preliminary

