# Results of DVCS measurement at COMPASS



Johannes Giarra on behalf of the COMPASS collaboration

## **DIS2022**

02. Mai - 06. Mai Santiago de Compostela, Spain









# Generalized Parton Distribution functions (GPDs)



#### Kinematic dependence:

- q: 4-mom. of virtual photon  $q = (\nu, \vec{q}) (Q^2 = -q^2)$
- $x_{Bi} = Q^2/2m_N \nu$
- x: avg. longitudinal momentum fractions
- $\xi$ : longitudinal momentum difference (related to  $x_{Bj}$ )
- t: momentum transfer to nucleon squared

- Parameterize nucleon structure in hard exclusive reactions e.g.
  - Deeply Virtual Compton Scattering (DVCS)

$$\gamma^* + N \rightarrow \gamma + N'$$

4 (chiral-even) GPDs for each quark flavour in LO and leading twist

$$H^f(x,\xi,t)$$
  $E^f(x,\xi,t)$   $\widetilde{H}^f(x,\xi,t)$   $\widetilde{E}^f(x,\xi,t)$ 

- No nucleon spin flip
- ► With nucleon spin flip

## GPDs not experimentally accessible

→ Related to Compton Form Factors (CFFs)

$$\mathcal{H}(\xi,t) = \int_{-1}^{1} \frac{H(x,\xi,t)}{x-\xi+i\epsilon} dx$$

⇒ CFFs are observables in cross section measurements

# **Exclusive photon production @ COMPASS**



# Deeply Virtual Compton Scattering (DVCS)

$$\mu + \mathbf{p} \rightarrow \mu' + \mathbf{p}' + \gamma$$

Bethe-Heitler (BH, Bremsstrahlung)

→ same final state



# Cross section of exclusive photon production:

$$\sigma(\mu p \to \mu' p' \gamma) = \sigma_{DVCS} + \sigma_{BH} + \sigma_{Int.}$$

# Measurement @ COMPASS

Diff. cross section:  $\frac{d^4\sigma}{dQ^2d\nu dt d\phi}$ 

#### Kinematic dependence:

 $ightharpoonup Q^2$ : 4-momentum squared of  $\gamma^*$ 

 $\triangleright \nu$  : Energy of  $\gamma^*$ 

t: Momentum transfer to proton

 $ightharpoonup \phi$ : Angle between scattering plane  $(\gamma^*)$  and production plane  $(\gamma)$ 



# ⇒ Measure angular distribution of real photon

#### Identify exclusive photon events:

Incoming muon Scattered muon Real photon

overconstrained

# Data taking @COMPASS:

- ▶ 2012 pilot run for 4 weeks
  - → Analysis finished and published
- Long runs dedicated to DVCS in 2016/17
  - 2 × 6 months
  - Analysis ongoing  $\rightarrow$  preliminary results

# The COMPASS experiment at CERN



# COMPASS spectrometer (2016/17)

# Two stage forward spectrometer SM1 + SM2

- ightharpoonup Beam flux determined using true Random Trigger  $\sim 1\%$  precision
- ► ECAL0, ECAL1 and ECAL2 (Photon detection)
- ► Muon trigger system ( $\mu$ ID)
  - $\sim$  300 tracking detector planes



# COMPASS spectrometer (2016/17)



# Selection of exclusive photon events

#### Vertex candidates:

- Incoming muon
  - Use same selection as for muon flux
- Scattered muon

#### Real photon candidate:

- Single photon with energy above DVCS threshold in one ECAL
  - ▶ 4/5/10 GeV in ECAL0/1/2

#### **Recoil proton candidates:**

- Recoil detector
- $t_{min} = 0.08 \, (\text{GeV/c})^2$

#### Additional conditions:

- ightarrow use **overconstrain** of measurement
  - Improve event selection by adding "exclusivity conditions"
  - Perform a kinematic fit
    - $\begin{tabular}{ll} $\rightarrow$ constrain on \\ & kinematic variables \end{tabular}$ 
      - $\lambda \chi^2 < 10$
      - fit efficiency 98% for exclusive single photon events

Only events which have exactly one combination of :

**Vertex candidate**  $\times \gamma$  candidate  $\times$  **Proton candidate** 

# **Exclusivity conditions for proton kinematics**

#### **Exclusivity variables**

$$▶ Δφ:$$
 $Δφ = φrecoil − φspec.$ 

Missing mass:  $M_x^2 = (k + p - k' - q' - p')^2$ 

spec.: Lorentz Vector of proton calculated from 4-Momentum conservation

recoil: Lorentz Vector of proton by measurement of recoil detector



# $\phi$ distribution

# High beam energy (160 GeV)

- ightharpoonup Choose 3  $\nu$  ranges
  - → different main contributions

# Bethe-Heitler dominant

80 < v [GeV] < 144



#### Interference



#### **DVCS** dominant

10 < v [GeV] < 32



# The binned DVCS cross section

**DVCS** cross section in bins of t,  $\phi$ ,  $Q^2$  and  $\nu$ :

$$\begin{split} \left\langle \frac{d\sigma_{DVCS}}{d|t|d\phi dQ^2 d\nu} \right\rangle_{t_i\phi_jQ_k^2\nu_l}^{\pm} = \\ \frac{1}{\mathcal{L}^{\pm}\Delta t_i\Delta\phi_j\Delta Q_k^2\Delta\nu_l} \left[ \left(\mathbf{a}_{ijkl}^{\pm}\right)^{-1} \left(\mathrm{data} - \mathrm{BH}_{MC} - \pi_{MC}^{0}\right) \right] \end{split}$$

- $\triangleright$  BH<sub>MC</sub>: Exclusive single photon MC sample
- $\blacktriangleright \pi_{MC}^0$ :  $\pi^0$  MC sample (background estimation)
- $\triangleright a_{iik}^{\pm}$ : Acceptance

Johannes Giarra DIS2022

#### The Bethe-Heitler contribution

▶ Bethe-Heitler process is well known, pure QED → evaluated using Monte-Carlo sample for BH

► HEPGEN generator for simulating exclusive events

#### Handling BH contribution:

- Kinematic range where BH is dominant
  - → use data luminosity as absolute normalization
- ▶ BH subtracted from the data in the DVCS region (small  $\nu$ )



**98.6±1% agreement** between data and MC

# The $\pi^0$ background contamination

- ▶ Photons from  $\pi^0$  decay
- ▶ One photon identified as exclusive photon event
  - $\rightarrow$  above DVCS energy threshold in ECALs

- $lackbox{Visible}$  (both  $\gamma$  are detected) substracted Combine the high energy photon candidate with all detected photons having energies below the DVCS energy thresholds
- Invisible (second  $\gamma$  lost) estimated by MC
  - Inclusive: LEPTO
     Exclusive: HEPGEN π<sup>0</sup>
  - $\rightarrow$  MC samples normalized to vis.  $\pi^0$  in data



# $\phi$ distribution of exclusive photon events

- ▶ 2/3 of the 2016 data
- $ightharpoonup 1 < Q^2 < 10 \; (\text{GeV/c})^2$







64% of events in data

≥ 24% of events in data

- ▶ 12% of events in data
- ▶ 37% BH contribution
- ▶ 10% inv. $\pi^0$  contribution

#### The binned DVCS cross section

**DVCS** cross section in bins of t,  $\phi$ ,  $Q^2$  and  $\nu$ :

$$\begin{split} \left\langle \frac{d\sigma_{DVCS}}{d|t|d\phi dQ^2 d\nu} \right\rangle^{\pm}_{t_i\phi_jQ_k^2\nu_l} = \\ \frac{1}{\mathcal{L}^{\pm}\Delta t_i\Delta\phi_j\Delta Q_k^2\Delta\nu_l} \left[ \left( \begin{array}{c} \mathbf{a}_{ijkl}^{\pm} \right)^{-1} \left( \mathrm{data} - \mathrm{BH}_{MC} - \pi_{MC}^0 \right) \right] \\ \\ \pi_{MC}^0 = \left( 1 - \mathrm{R} \right) \cdot \pi_{HEPGEN}^0 + \mathrm{R} \cdot \pi_{LEPTO}^0 \end{split}$$

- ► BH<sub>MC</sub>: BH MC sample
- $\blacktriangleright$   $\pi^0_{HEPGEN}$ : exclusive  $\pi^0$  MC sample
- $ightharpoonup \pi_{LEPTO}^0$ : inclusive  $\pi^0$  MC sample

- ▶ R: Relative contribution of LEPTO (~40%)
- ▶ a<sup>±</sup>: Acceptance

#### Binning and kinematic range:

- ▶ 4 bins in t between 0.08 and 0.64  $(GeV/c)^2$  (equistatistics)  $\rightarrow$  limit to region with
- ▶ 4 bins in  $\nu$  between 10 and 32 GeV (equidistant)
- ▶ 4 bins in  $Q^2$  between 1 and 5 (GeV/c)<sup>2</sup> (equidistant)
- ▶ 8 bins in  $\phi$  between  $-\pi$  and  $\pi$  (equidistant)

#### Acceptance studies

 limit to region with mostly flat acceptance

avg. acc.  $\sim$ 40%, good agreement between  $\mu^+$  and  $\mu^-$ 

# Calculate the t-dependence of the cross section

From  $\mu p$  to  $\gamma^* p$ :

$$rac{d\sigma^{\mu p}}{dt d\phi dQ^2 d
u} 
ightarrow rac{d\sigma^{\gamma^* p}}{dt d\phi dQ^2 d
u}$$

by weighting each event in data and MC by the inverse virtual photon flux

$$\Gamma(Q^2, \nu) = \frac{\alpha_{EM}(1 - x_{Bj})}{2\pi Q^2 y E} \left[ y^2 \left( 1 - \frac{2m_{\mu}^2}{Q^2} \right) + \frac{2}{1 + (\frac{Q^2}{\nu^2})} \left( 1 - y - \frac{Q^2}{4E^2} \right) \right]$$

t-dependence for  $\mu^+$  and  $\mu^-$ :

$$\left\langle \left. rac{d\sigma_{DVCS}}{d|t|} 
ight
angle_{t_{l}}^{\pm} = rac{\sum\limits_{k,l} \left\langle rac{d\sigma_{DVCS}}{d|t|dQ^{2}d
u} 
ight
angle_{t_{l}Q_{k}^{2}
u_{l}}^{\pm} \Delta Q_{k}^{2} \Delta
u_{l}}{\Delta Q^{2}\Delta
u}$$

→ Integration over φ dependence removes interference and φ-dependent DVCS contribution

$$\mathcal{S}_{CS,U} = d\sigma^{+\uparrow} + d\sigma^{-\downarrow} = 2[d\sigma^{BH} + c_0^{DVCS} + c_1^{DVCS} \cos\phi + c_2^{DVCS} \cos2\phi + s_1^{Int} \sin\phi + s_2^{Int} \sin2\phi]$$

t-dependence of the cross section:

$$\left\langle \frac{d\sigma_{DVCS}}{d|t|} \right\rangle_{t_i} = \frac{1}{2} \left( \left\langle \frac{d\sigma_{DVCS}}{d|t|} \right\rangle_{t_i}^+ + \left\langle \frac{d\sigma_{DVCS}}{d|t|} \right\rangle_{t_i}^- \right)$$

# Analyse the cross section t-slope

$$d\sigma^{DVCS}/dt \sim e^{-B|t|} \propto c_0^{DVCS} \sim \mathcal{I}m\mathcal{H}$$

#### Perform binned maximum Likelihood-fit

$$B = (6.6 \pm 0.6_{stat} \pm 0.3_{sys}) (\text{GeV/c})^{-2}$$

Dominant source of systematics: MC normalisation to visible  $\pi^0$  in data



# Analyse the cross section t-slope

$$d\sigma^{DVCS}/dt \sim e^{-B|t|} \propto c_0^{DVCS} \sim \mathcal{I}m\mathcal{H}$$

## Perform binned maximum Likelihood-fit

$$B = (6.6 \pm 0.6_{stat} \pm 0.3_{sys}) (\text{GeV/c})^{-2}$$

Dominant source of systematics: MC normalisation to visible  $\pi^0$  in data





2012 results PLB 793 (2019) 188

$$B = (4.3 \pm 0.6_{stat} \, ^{+0.1}_{-0.3} \mid_{sys}) \, (\text{GeV/c})^{-2}$$

DIS2022 Johannes Giarra

# Outlook

- Analyse full statistics of 2016 and 2017 (about 3 times more than 2016)
- More detailed studies of systematic uncertainties
- Cross section study in several x<sub>Bi</sub> regions
- Study the azimuthal dependence of the cross section  $\rightarrow$ Determine  $c_0^{DVCS}$ ,  $c_1^{DVCS}$ ,  $c_2^{DVCS}$ ,  $s_1^{Int.}$  and  $s_2^{Int.}$
- ► Cross section difference  $\mathcal{D}_{CS.U} = d\sigma^{+\uparrow} d\sigma^{-\downarrow}$  $\rightarrow$  Access to  $\mathcal{R}e\mathcal{H}$

Johannes Giarra DIS2022 Thank you for your attention.

# **Backup**

# **Acceptance**

- Exclusive single photon MC data sample
- ▶ In 4 dimensions:  $acc(t, \phi, Q^2, \nu) = N_{rec}/N_{gen}$



Kinematic variables for reconstructed MC from kinematic fit
→ Includes bin migration

Average about 40%

Similar acceptance between  $\mu^+$  and  $\mu^-$