

Measuring the radiative width of the $\rho(770)$ and testing the chiral anomaly at COMPASS

Dominik Ecker for the COMPASS collaboration (dominik.ecker@tum.de)

13th workshop on e^+e^- Collisions from Phi to Psi – August 18, 2022

Quantum Chromodynamics

- Quantum Chromodynamics (QCD) as true theory of strong interaction
- Lagrange density of QCD:

$$\mathcal{L}_{QCD} = \sum_{\substack{f = \{u,d, \\ c,s,t,b\}}} \sum_{i,j=1}^{N_c} \overline{\psi}_{f,j} (i \gamma^{\mu} D_{i,\mu}^{\ j} - m_f \delta_i^{\ j}) \psi^{f,i} - \frac{1}{4} \sum_{a=1}^{N_c^2 - 1} G_{\mu\nu}^a G_a^{\mu\nu}$$

Flavor symmetries?

Quantum Chromodynamics

- Quantum Chromodynamics (QCD) as true theory of strong interaction
- Lagrange density of QCD:

$$\mathcal{L}_{QCD} = \sum_{\substack{f = \{u,d,\\c,s,t,b\}}} \sum_{i,j=1}^{N_c} \overline{\psi}_{f,j} (i \gamma^{\mu} D_{i,\mu}^{\ j} - \underline{m_f} \delta_i^{\ j}) \psi^{f,i} - \frac{1}{4} \sum_{a=1}^{N_c^2-1} G_{\mu\nu}^a G_a^{\mu\nu}$$
 Flavor symmetry breaking term $(m_u \neq m_d \neq m_s)$

- Flavor symmetries? -> only approximate symmetries

- SU(2): $m_u \approx m_d$ -> isospin symmetry SU(3): $m_u \approx m_d \approx m_s$ -> the eightfold way

Chiral symmetry of QCD

- Quantum Chromodynamics (QCD) as true theory of strong interaction
- Lagrange density of QCD:

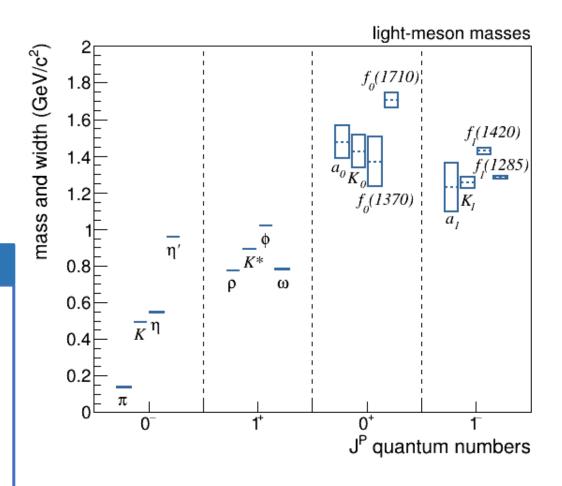
$$\mathcal{L}_{QCD} = \sum_{\substack{f = \{u,d, \\ c,s,t,b\}}} \sum_{i,j=1}^{N_c} \overline{\psi}_{f,j} (i \gamma^{\mu} D_{i,\mu}^{\ j} - m_f \delta_i^{\ j}) \psi^{f,i} - \frac{1}{4} \sum_{a=1}^{N_c^2 - 1} G_{\mu\nu}^a G_a^{\mu\nu}$$

• Approximate flavor symmetries in chiral limit $(m_u = m_d = m_s = 0)$:

$$SU(3)_R \times SU(3)_L$$

- Left- and right-handed fields decouple for massless particles
- Chirality can directly be translated to parity of particle
 → mass-degenerate doublets of states with opposite parity

Chiral symmetry of QCD


Lagrange density of QCD:

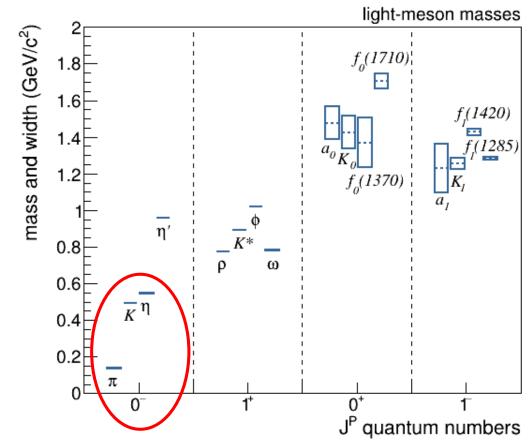
$$\mathcal{L}_{QCD} = \sum_{\substack{f = \{u,d, \\ c,s,t,b\}}} \sum_{i,j=1}^{N_c} \overline{\psi}_{f,j} (i \gamma^{\mu} D_{i,\mu}^{j} - m_f \delta_i^{j}) \psi^{f,i} - \frac{1}{4} \sum_{a=1}^{N_c^2 - 1} G_{\mu\nu}^{a} G_a^{\mu\nu}$$

• Approximate flavor symmetries in chiral limit $(m_u = m_d = m_s = 0)$:

$SU(3)_R \times SU(3)_L$

- Left- and right-handed fields decouple for massless particles
- Chirality can directly be translated to parity of particle
 → mass-degenerate doublets of states with opposite parity
- Why does chiral symmetry not manifest itself in the spectrum (in contrast to isospin and eightful way)?
 - → Nambu-Goldstone mechanism for spontaneous/dynamic breakdown of chiral symmetry

Dynamic breaking of chiral symmetry



Spontaneous symmetry breaking

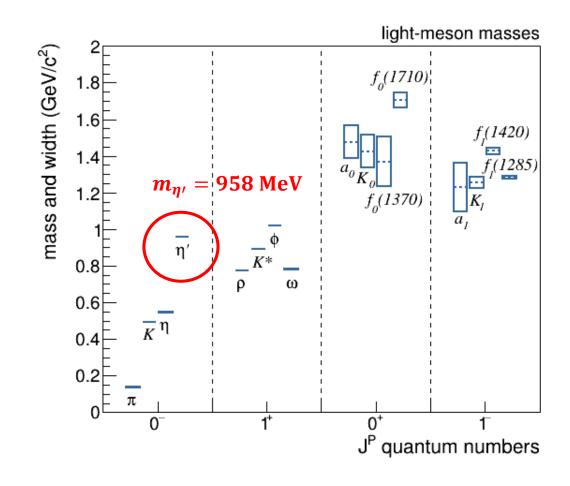
⇒ Eight massless, spinless Goldstone bosons

$$(\pi^{\pm}, \pi^{0}, K^{\pm}, K^{0}, \bar{K}^{0}, \eta)$$

- ⇒ Explicit breaking of chiral symmetry due to the small quark masses -> Goldstone bosons acquire mass
- $\Rightarrow SU(3)_R \times SU(3)_L \rightarrow SU(3)_V$
- ⇒ Chiral Perturbation Theory: effective Lagrangian with power-counting scheme as low-energy theory for QCD makes use of chiral symmetry

(almost) massless Goldstone bosons

The chiral anomaly


Lagrange density of QCD:

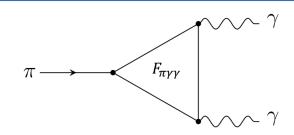
Lagrange density of QCD:
$$\mathcal{L}_{QCD} = \sum_{\substack{f = \{u,d, \\ c,s,t,b\}}} \sum_{i,j=1}^{N_c} \overline{\psi}_{f,j} (i \gamma^{\mu} D_{i,\mu}^{\ j} - m_f \delta_i^{\ j}) \psi^{f,i} - \frac{1}{4} \sum_{a=1}^{N_c^2 - 1} G_{\mu\nu}^a G_a^{\mu\nu}$$

• Features axial U(1)-symmetry in chiral limit:

$$\psi(x) \rightarrow e^{i\theta\gamma_5} \psi(x)$$

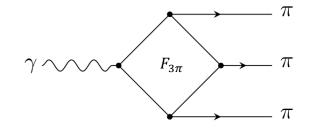
- No ninth "unnaturally light" meson
- Anomalous symmetry breaking: symmetry of the Lagrangian does not lead to conserved Noether currents
- Anomaly: Symmetry of classical Lagrangian violated at quantum level

Wess-Zumino-Witten term



- Chiral anomaly in ChPT taken into account by Wess-Zumino-Witten (WZW) term
- Describes coupling of odd number of Goldstone bosons:

SU(2) flavor	SU(3) flavor
$\pi^0 \rightarrow \gamma \gamma$	$K^+K^- \rightarrow \pi^+\pi^-\pi^0$
$\gamma \pi^- \rightarrow \pi^- \pi^0$	$\eta \rightarrow \pi^+\pi^-\gamma$
$\pi^+ \rightarrow e^+ \nu_e \gamma$	$K^+ \rightarrow \pi^+ \pi^- e^+ \nu_e$
etc.	etc.

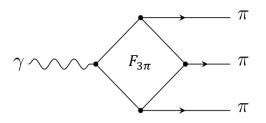

• Effective theory -> pion decay constant measured from leptonic decays of the charged pion $(\pi^{\pm} \to \mu^{\pm} + \nu)$

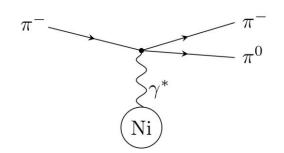
$F_{\pi\gamma\gamma}$

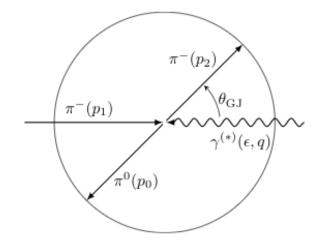
•
$$F_{\pi\gamma\gamma} = \frac{e^2 N_C}{12\pi^2 F_{\pi}} = 2.52 \cdot 10^{-2} \text{GeV}^{-1}$$

$F_{3\pi}$

•
$$F_{3\pi} = \frac{eN_C}{12\pi^2 F_{\pi}^3} = (9.78 \pm 0.05) \text{GeV}^{-3}$$

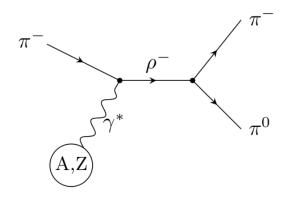

Testing the chiral anomaly - $F_{3\pi}$



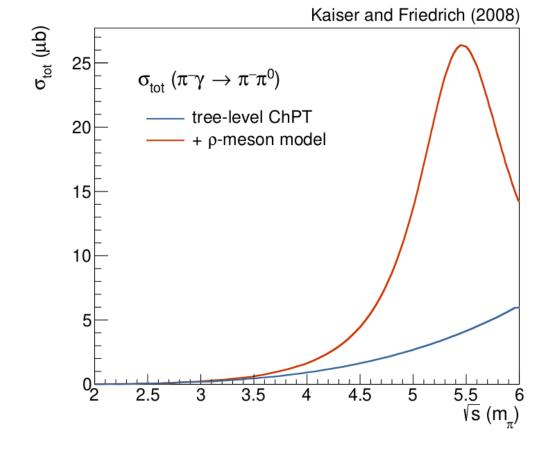

- $F_{3\pi}$: Direct coupling of γ to 3π process proceeds primarily via the chiral anomaly => one of the most definitive tests of low-energy QCD
- Accessible in Primakoff reactions via: $\pi^- \gamma^* \to \pi^- \pi^0$
- Challenges:
 - 1. Explicit chiral symmetry breaking:

$$F_{3\pi} = \frac{eN_C}{12\pi^2 F_{\pi}^3} = (9.78 \pm 0.05) \text{GeV}^{-3} = F(s = t = u = 0)$$

2. Coherent background from $\rho(770)$ production



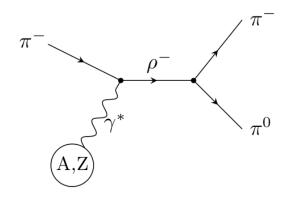
Coherent background from $\rho(770)$ meson


• Background from $\rho(770)$ production (strong and electromagnetic)

 \Rightarrow possibility of extraction of radiative width of ρ -meson:

$$\Gamma_{(\rho \to \pi \gamma)}/\Gamma_{\text{tot}} \approx 4.5 \cdot 10^{-4}$$

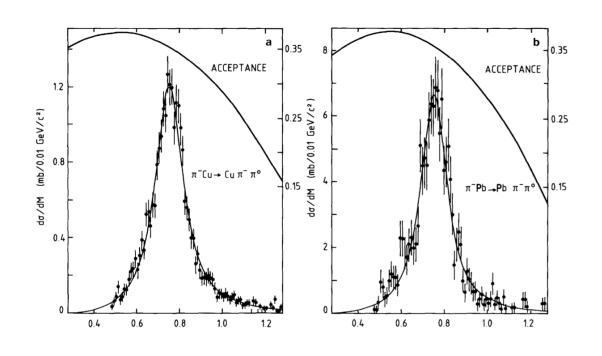
 \Rightarrow contributes to hadronic vacuum polarization terms in calculations of g-2 of e and μ



Kaiser, N. and Friedrich, J. M., EPJA 36 no. 2, (2008) 181–188

Radiative width of $\rho(770)$ meson

• Background from $\rho(770)$ production (strong and electromagnetic)


 \Rightarrow possibility of extraction of radiative width of ρ -meson:

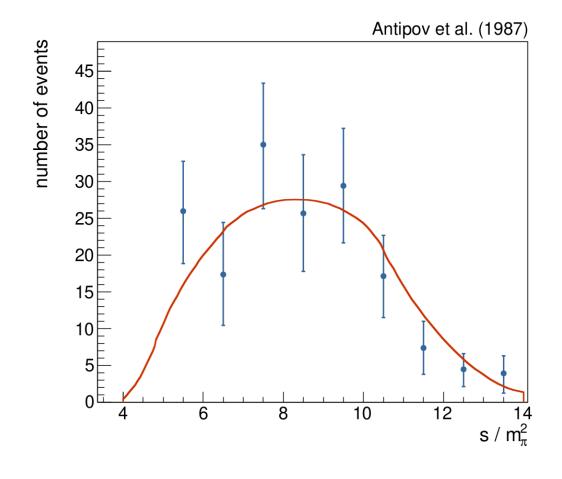
$$\Gamma_{(\rho \to \pi \gamma)}/\Gamma_{\text{tot}} \approx 4.5 \cdot 10^{-4}$$

 \Rightarrow contributes to hadronic vacuum polarization terms in calculations of g-2 of e and μ

<u>Capraro, L. et al. NPB 288 (1987) 659-680</u> at CERN (SPS):

• From fit of $d\sigma/dt$ for ρ production: $\Gamma(\rho \to \pi \gamma) = (81 \pm 4 \pm 4) \text{ keV}$

Previous measurement of $F_{3\pi}$



Antipov, Y. et al. PRD 36 (1987) 101103 using data from Serpukhov experiments

Problem of explicit chiral symmetry breaking:

As previously noted, the value $F^{3\pi}$ is supposed to vary slowly with $s,t,q^2 << m_{\rho}^2$ so that $F^{3\pi} \simeq F^{3\pi}(0)$.

$$\Rightarrow \bar{F}_{3\pi} = (12.9 \pm 0.9 \pm 0.5) \text{ GeV}^{-3}$$

Previous measurement of $F_{3\pi}$ - Reanalysis

Ametller, L. et al. PRD 64 (2001) 094009

PHYSICAL REVIEW D, VOLUME 64, 094009

Electromagnetic corrections to $\gamma \pi^{\pm} \rightarrow \pi^0 \pi^{\pm}$

Ll. Ametller Dept. de Física i Enginyeria Nuclear, UPC, E-08034 Barcelona, Spain

M. Knecht and P. Talavera

Centre de Physique Théorique, CNRS-Luminy, Case 907, F-13288 Marseille Cedex 9, France

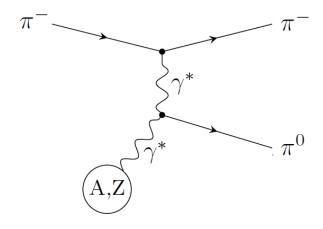
(Received 11 July 2001; published 3 October 2001)

The amplitude for the anomalous transitions $\gamma\pi^\pm\to\pi^0\pi^\pm$ is analyzed within chiral perturbation theory including electromagnetic interactions. The presence of a *t*-channel one-photon exchange contribution induces sizable $\mathcal{O}(e^2)$ corrections which enhance the cross section in the threshold region and bring the theoretical prediction into agreement with available data. In the case of the crossed reaction $\gamma\pi^0\to\pi^+\pi^-$, the same contribution appears in the *s* channel and its effects are small.

DOI: 10.1103/PhysRevD.64.094009 PACS number(s): 12.39.Fe, 11.30.Rd, 13.60.Le, 13.75.-n

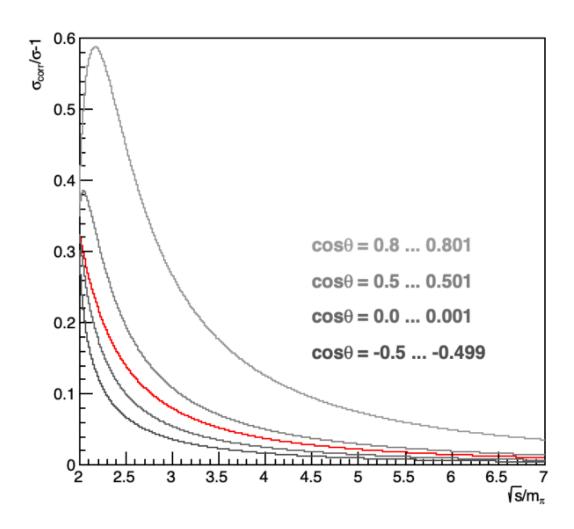
Reanalysis of Serpukhov data using chiral expansion:

$$F_{3\pi}(s,t,u) = F_{3\pi}(f^{(0)}(s,t,u) + f^{(1)}(s,t,u) + f^{(2)}(s,t,u) + \dots)$$


 Extrapolation using one loop and two loop corrections:

$$F_{3\pi} = (11.4 \pm 1.3) \text{ GeV}^{-3}$$

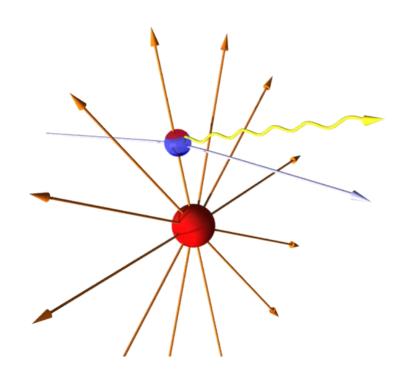
Previous measurement of $F_{3\pi}$ - Reanalysis


• Electro-magnetic corrections => significant contribution to $f^{(0)}(s,t,u)$ when isospin breaking effect are taken into account.

Integrated correction amounts to 32% at threshold

$$\implies F_{3\pi} = (10.7 \pm 1.2) \text{ GeV}^{-3}$$

- Precision of previous measurements: $\mathcal{O}(10\%)$
 - ⇒ More precise experimental determination desirable

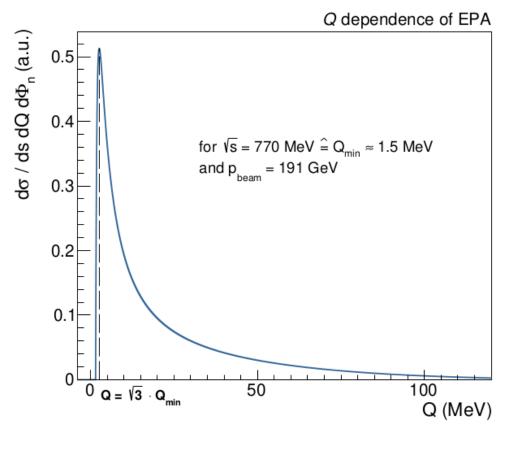


Ametller, L. et al. PRD 64 (2001) 094009

Primakoff reactions

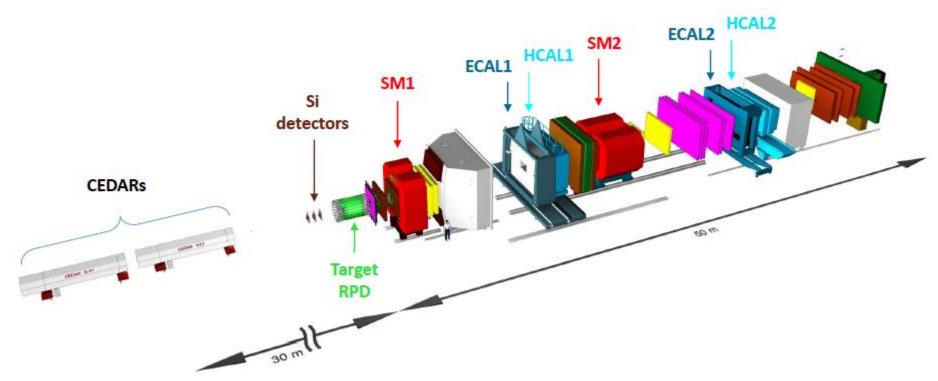
- Idea dates back to Henry Primakoff ("photon target")
- Photon is provided by the strong Coulomb field of a nucleus (typical field strength at $d = 5R_{Ni}$: $E \approx 300 \text{ kV/fm}$)
- Coulomb field of nucleus is a source of quasireal ($P_{\gamma}^2 \ll m_{\pi}^2$) photons
- Large impact parameters (ultra-peripheral scattering)

Weizsäcker-Williams approximation



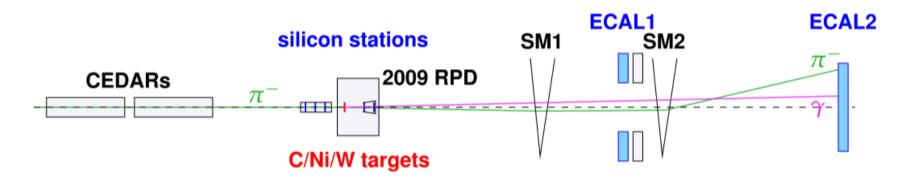
• Coulomb field of relativistic charge ≈ flux of quasi-real photons Equivalent photon approximation (single-photon exchange)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}s\,\mathrm{d}Q^2\,\mathrm{d}\Phi_n} = \frac{Z^2\alpha}{\pi(s-m_\pi^2)}F^2(Q^2)\frac{Q^2-Q_{\min}^2}{Q^4}\cdot\frac{\mathrm{d}\sigma_{\pi\gamma\to X}}{\mathrm{d}\Phi_n}$$


Flux of quasi-real photons $\pi\gamma$ scattering cross section

- Beam pions scatter off equivalent photons
- Peak at tiny momentum transfers $Q^2 \approx 10^{-5} {\rm GeV}^2/c^2$

The COMPASS experiment at CERN



Abbon, P. et al. NIM A 779 (2014) 69–115

- 190 GeV negative hadron beam
- Beam PID
- Nuclear target(s):Ni and W
- Calorimetric trigger on neutrals
- Two stage spectrometer (LAS and SAS) with tracking and calorimeter

Principle of Measurement

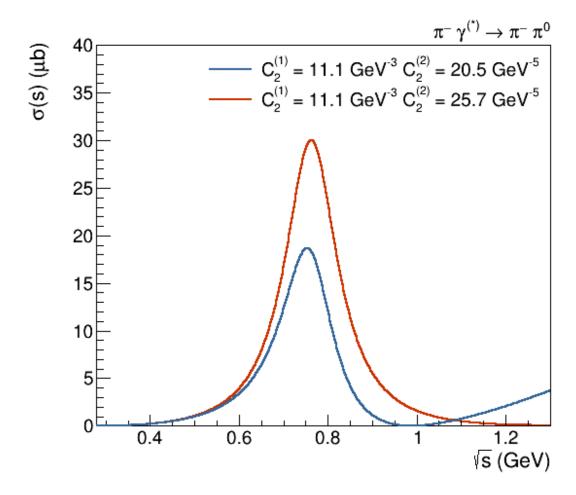
- 190 GeV negative hadron beam: 96.8% π^- , 2.4% K^- , 0.8% \bar{p}
- Beam particle identification by Cherenkov detectors
- 4mm Ni target disk ($\approx 25\% X/X_0$)
- Measure scattered π^- and produced photons (number of photons depends on final state)
- Select exclusive events at very low Q^2
- For absolute cross-section measurements:

Luminosity determination via free Kaon decays

$$(K^- \longrightarrow \pi^- \pi^0 \text{ or } K^- \longrightarrow \pi^- \pi^0 \pi^0)$$

COMPASS measurement

• Dispersive framework to deduce $F_{3\pi}$ from a fit to the $\pi^-\pi^0$ mass distribution up to 1.0 GeV including the $\rho(770)$ -resonance:


$$\sigma(s) = \frac{(s - 4m_{\pi}^2)^{3/2}(s - m_{\pi}^2)}{1024\pi\sqrt{s}} \int_{-1}^{1} dz (1 - z^2) |\mathcal{F}(s, t, u)|^2$$

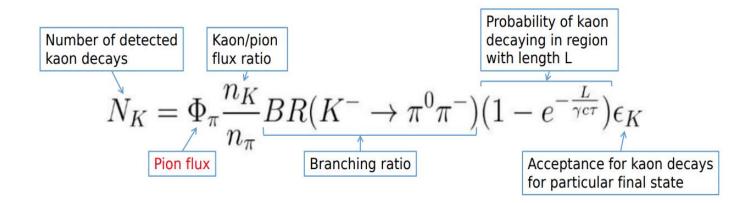
With

$$\mathcal{F}(s,t,u) = C_2^{(1)} \mathcal{F}_2^{(1)}(s,t,u) + C_2^{(2)} \mathcal{F}_2^{(2)}(s,t,u) - \frac{2e^2 F_{\pi}^2 F_{3\pi}}{t}$$

 $C_2^{(1)}, C_2^{(2)}$: fit parameters

 $\mathcal{F}_2^{(1)}(s,t,u)$, $\mathcal{F}_2^{(2)}(s,t,u)$: provided by theory colleagues (Kubis, Hoferichter)

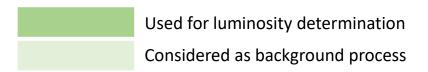
M. Hoferichter, B. Kubis, and D. Sakkas, PRD 86 (2012) 116009


Luminosity determination

 Needed for absolute cross section measurement: effective integrated luminosity (DAQ dead time taken into account)

Effective luminosity:
$$L_{eff} = L \cdot (1 - \epsilon_{DAQ})$$

- Luminosity can be determined via free decays of beam kaons in the beam:
 - Use CEDARs to tag kaons
 - Measure free decays where no material
 - Exclusive events with zero momentum transfer

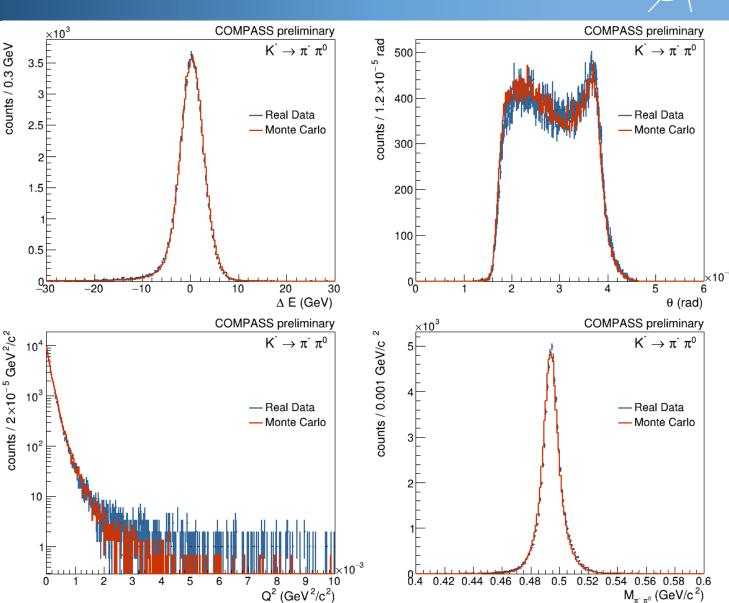


Kaon decay channels

Decay channel	$\Gamma_i/_{\Gamma}$	Remark	
$K^- \to \mu^- \bar{\nu}_{\mu}$	$(63.56 \pm 0.11) \%$	Does not deposit energy in ECAL2 (Primakoff-trigger)	
$K^- o \pi^- \pi^0$	$(20.67 \pm 0.08) \%$	Similar systematics as Primakoff $\pi^- \to \pi^- \pi^0$ channel	
$K^- \to \pi^- \pi^- \pi^+$	$(5.583 \pm 0.024) \%$	Does not deposit energy in ECAL2 (Primakoff-trigger)	
$K^- o e^- \pi^0 \overline{ u}_e$	$(5.07 \pm 0.08) \%$	Non exclusive, missing energy	
$K^- o \mu^- \pi^0 \overline{ u}_\mu$	$(3.352 \pm 0.033) \%$	Non exclusive, missing energy	
$K^- o \pi^- \pi^0 \pi^0$	$(1.760 \pm 0.023) \%$	Used to determine π/K -ratio in the beam	
others	< 10 ⁻⁴	No significant contribution to background expected	

 Different channels may form background for each other, but give possibility to crosscheck results

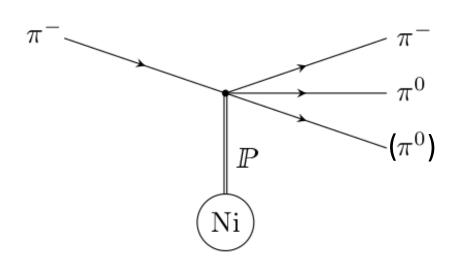
Effective integrated luminosity


$$L_{2\pi,eff} = 5.21 \pm 0.04_{stat} \text{ nb}^{-1}$$

 $L_{3\pi,eff} = 5.06 \pm 0.12_{stat} \text{ nb}^{-1}$

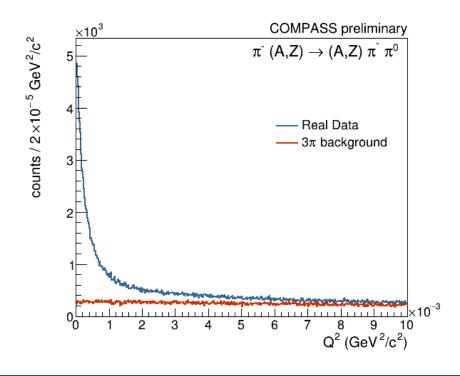
Largest constributions to systematic uncertainty:

- CEDAR tag efficiency: 7%
- ECAL reconstruction: 5%
- kaon/pion beam ratio: 2.5%

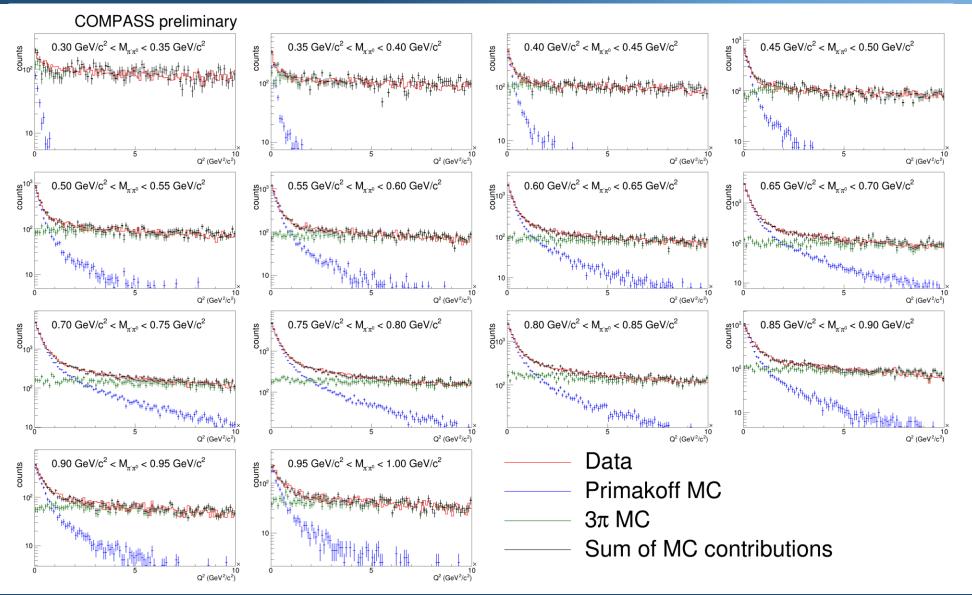

Result:

$$L_{eff} = 5.21 \pm 0.48_{syst} \pm 0.04_{stat}$$

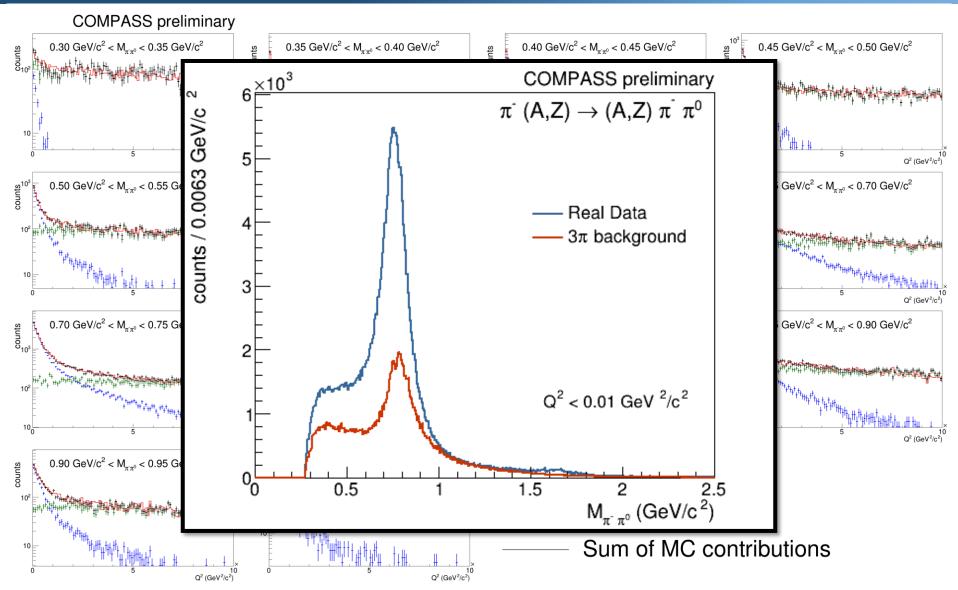
Main Background



- $\pi^-\pi^0$ -final state forbidden by *G*-parity conservation
- Large cross section for $\pi^-\pi^0\pi^0$ final state \Longrightarrow loss of one (soft) π^0
- Approach: determine leakage from 3pi MC data with
 2pi event selection

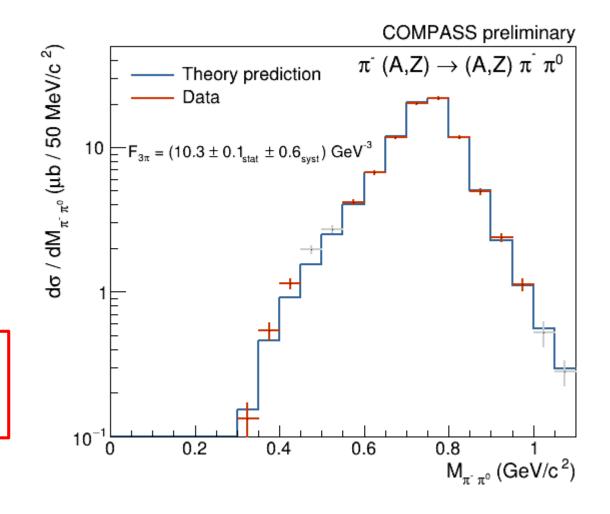

Approach for 3π leakage:

- Select diffractive 3π events
- Develop partial-wave model
- Weight 3π Monte Carlo data set according to model
- Subtract from 2π event sample


Scaling of 3π Monte Carlo background prediction

Scaling of 3π Monte Carlo background prediction

Results of dispersive fits



• Selection: $Q^2 < 1.296 \cdot 10^{-3} \,\text{GeV}^2/c^2$

$$c_2^{(1)} = (10.5 \pm 0.1_{stat} \pm 0.6_{syst}) \text{ GeV}^{-3}$$

 $c_2^{(2)} = (24.5 \pm 0.1_{stat} + 2.9_{-1.4_{syst}}) \text{ GeV}^{-5}$

$$F_{3\pi} = (10.3 \pm 0.1_{stat} \pm 0.6_{syst}) \text{GeV}^{-3}$$

 $\Gamma_{\rho \to \pi \gamma} = \left(76 \pm 1_{stat}^{+10}_{-8}\right) \text{keV}$

- Preliminary result for $F_{3\pi}$ in agreement with theory prediction from ChPT
- Lower systematics to be expected

Comparison to previous measurements

• COMPASS: First combined measurement of $F_{3\pi}$ and $\Gamma_{\rho \to \pi \gamma}$

$$F_{3\pi} = (10.3 \pm 0.1_{stat} \pm 0.6_{syst}) \text{GeV}^{-3}$$

 $\Gamma_{\rho \to \pi \gamma} = \left(76 \pm 1_{stat}^{+10}_{-8}\right) \text{keV}$

- Intensive test of systematics:
 - Different K^- decay channels
 - Studies on different background contributions (ω and π exchange)
- Accompanied with intensive analysis of $\pi^- {\rm Ni} \to \pi^- \pi^0 \pi^0 {\rm Ni}$ for background estimation

Capraro, L. et al. NPB 288 (1987) 659-680 at CERN (SPS):

$$\Gamma_{\rho \to \pi \gamma} = (81 \pm 4 \pm 4) \text{ keV}$$

Obtained by fitting $d\sigma/dt$ distribution (separation of nuclear and Coulomb processes)

- Neglecting chiral production of $\pi^-\pi^0$
- Presumably underestimation of systematics $(3\pi \text{ leakage, beam composition})$

```
\Gamma(\pi^{\pm}\gamma)

VALUE (keV)

DOCUMENT ID

TECN
CHG
COMMENT

68 ±7 OUR FIT
Error includes scale factor of 2.3.

68 ±7 OUR AVERAGE
Error includes scale factor of 2.2. See the ideogram below.

81 ±4 ±4

CAPRARO
87 SPEC - 200 \pi^-A \rightarrow \pi^-\pi^0A

59.8±4.0

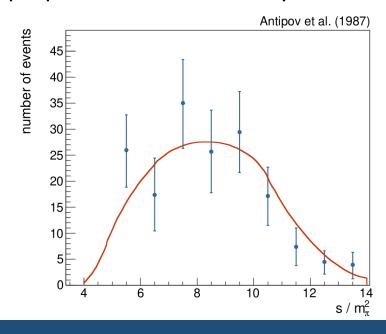
HUSTON
86 SPEC + 202 \pi^+A \rightarrow \pi^+\pi^0A

71 ±7

JENSEN
83 SPEC - 156-260 \pi^-A \rightarrow \pi^-\pi^0A
```

Comparison to previous measurements

• COMPASS: First combined measurement of $F_{3\pi}$ and $\Gamma_{\rho \to \pi \gamma}$


$$F_{3\pi} = (10.3 \pm 0.1_{stat} \pm 0.6_{syst}) \text{GeV}^{-3}$$

 $\Gamma_{\rho \to \pi \gamma} = \left(76 \pm 1_{stat}^{+10}_{-8}\right) \text{keV}$

- Intensive test of systematics:
 - Different K^- decay channels
 - Studies on different background contributions $(\omega \text{ and } \pi \text{ exchange})$
- Accompanied with intensive analysis of $\pi^- {\rm Ni} \to \pi^- \pi^0 \pi^0 {\rm Ni}$ for background estimation

Antipov, Y. et al. PRD 36 (1987) 101103 and reanalyzed by Ametller, L. et al. PRD 64 (2001) 094009

$$F_{3\pi} = (10.7 \pm 1.2) \text{ GeV}^{-3}$$

- Neglecting s-channel production of ho meson
- No proper consideration of systematics

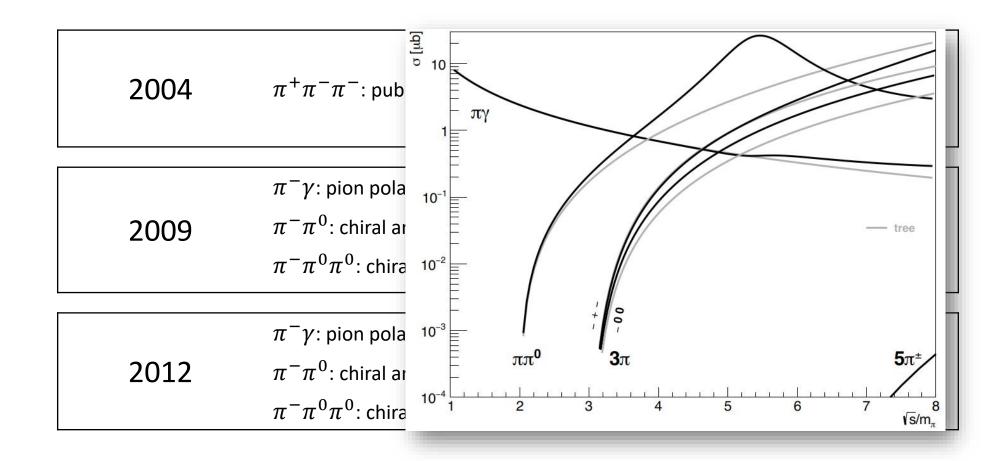
Thank you for your attention

Primakoff data sets at COMPASS

4x larger data set compared to 2009

No results yet, MC still incomplete

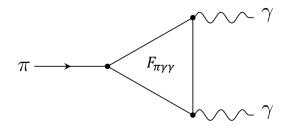
 $\pi^-\gamma$: pion polarizabilities


 $\pi^-\pi^0\pi^0$: chiral dynamics

 $\pi^-\pi^0$: chiral anomaly

2012

Primakoff data sets at COMPASS

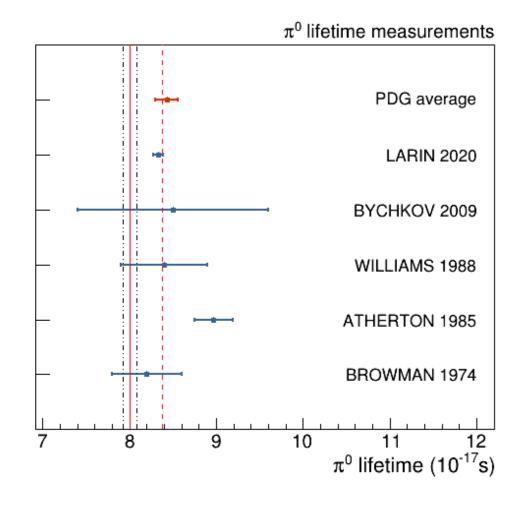


Discovery of the chiral anomaly – π^0 lifetime

• First definitive measurement of π^0 -lifetime in 1963:

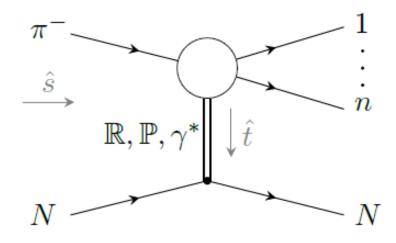
$$\tau_{\rm exp}(\pi^0) = (9.5 \pm 1.5) \cdot 10^{-17} \text{s} \neq \tau_{\rm PCAC}(\pi^0) \approx 10^{-13} \text{s}$$

 Adler, Bell, Jackiw, Bardeen 1969: calculation of triangle diagram


$$\Gamma^{\text{anom}}(\pi^0 \to \gamma \gamma) = F_{\pi \gamma \gamma}^2 \cdot \frac{m_{\pi^0}^3}{64\pi} = \left(\frac{e^2 N_c}{12\pi^2 F_{\pi}}\right)^2 \frac{m_{\pi^0}^3}{64\pi} = 7.75 \,\text{eV}$$

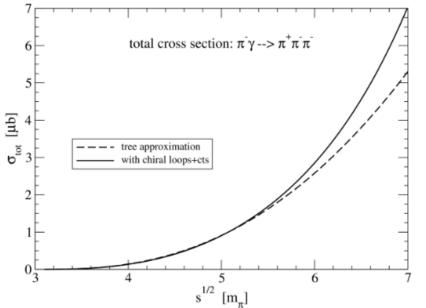
$$\tau(\pi^0) = \text{BR}(\pi^0 \to \gamma \gamma) \cdot \frac{\hbar}{\Gamma^{\text{anom}}(\pi^0 \to \gamma \gamma)}$$

$$= 8.38 \cdot 10^{-17} \,\text{s}$$

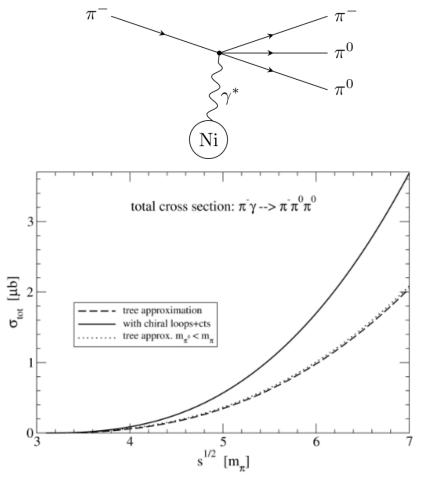

 Moussalam and Kampf 2009: NLO-calculation in chiral perturbation theory

$$\tau_{\rm NLO}(\pi^0) = (8.04 \pm 0.11) \cdot 10^{-17} \,\mathrm{s}$$

Production mechanisms for mesons at COMPASS

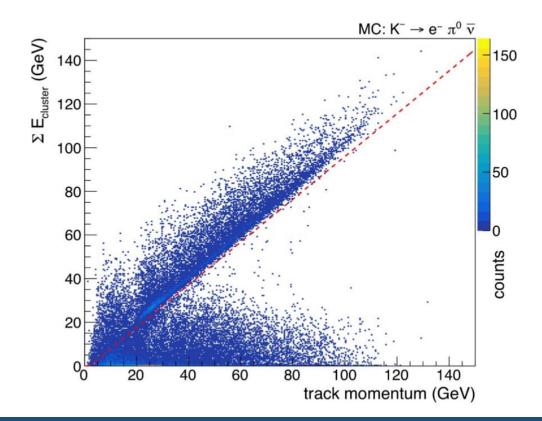

- Strong and electromagnetic production of mesons
- Electromagnetic production via Primakoff effect with sharp Q^2 distribution
- Pomeron exchange: $\pi^-\pi^0$ final state forbidden due to Gparity conservation, but: large cross-section for $\pi^-\pi^0\pi^0$ final state \to loss of one (soft) π^0 as main background

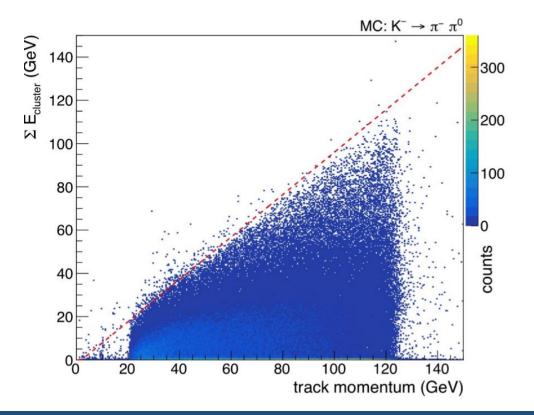
	Primakoff	P (strong)	\mathbb{R} (strong)
$\sigma(s)$	$\propto \ln(\sqrt{s})$	\propto const.	$\propto 1/\sqrt{s}$
$\sigma(A_{\mathrm{target}})$	\propto const.	$\propto A^{2/3}$	$\propto A^{2/3}$
$\sigma(Z_{\mathrm{target}})$	$\propto Z^2$	\propto const.	\propto const.
$\sigma(t)$	$\propto \frac{Q^2 - Q_{\min}^2}{Q^4} = \frac{\hat{t}'}{\hat{t}^2}$	$\propto e^{-b\hat{t}'}$	$\propto g(\hat{t}) \cdot e^{-b\hat{t}'}$ for small \hat{t}


Chiral Tree, Chiral Loop

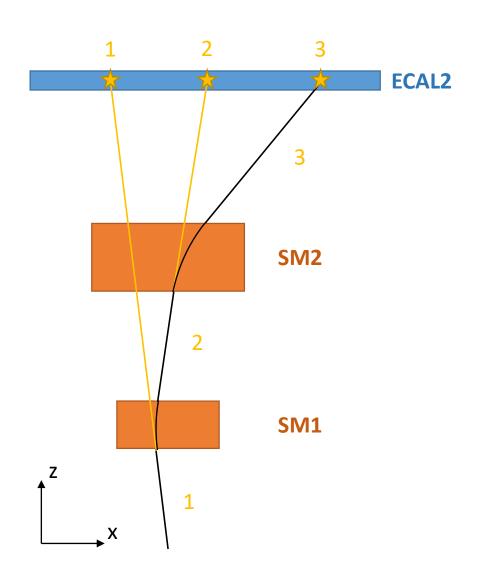
- Direct (point-like) coupling of photon to 4 pions
- Prediction from ChPT at tree- and loop-level available

Grabmüller S. (2012). Cryogenic Silicon Detectors and Analysis of Primakoff Contributions to the Reaction $\pi^-Pb \rightarrow$

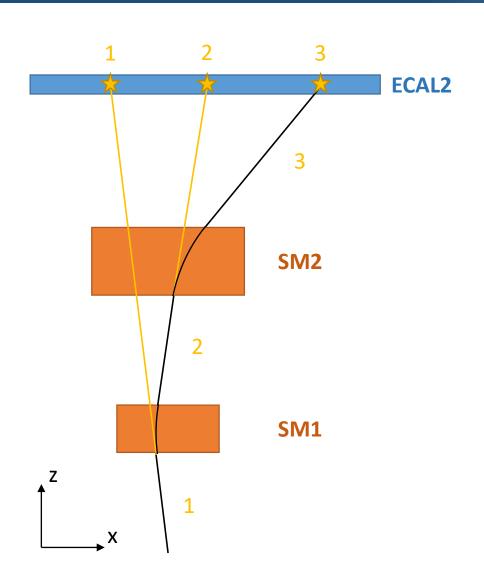


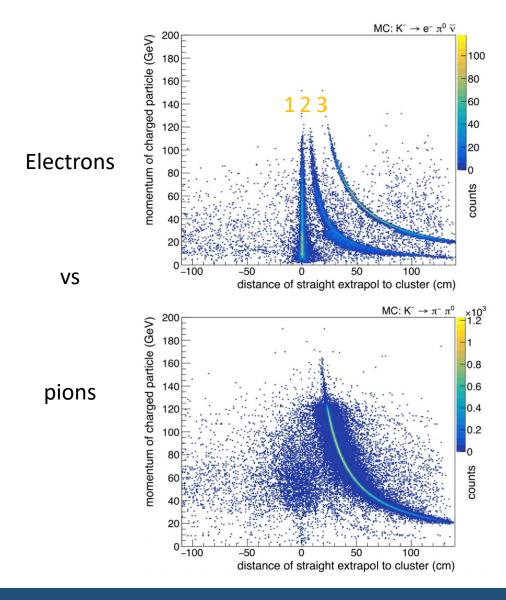

Krämer M. (2016) Evaluation and Optimization of a digital calorimetric trigger and analysis of $\pi^-Ni \longrightarrow$

π^-/e^- distinction


- Naive idea: E/p in calorimeter
- Possible discrimination line can be identified
- Still: many electrons deposit less energy than expected
- Reason: energy loss due to Bremsstrahlung in the spectrometer

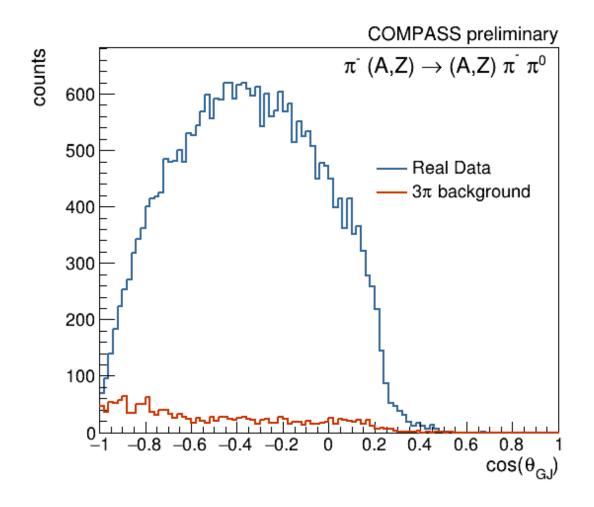
Bremsstrahlung





- Charged particle radiates photons while propagating through matter
- Deflection in dipole magnets dependent on momentum of charged track
- 3 distinct regions with increased probability for Bremsstrahlung
- Electrons have higher probability for Bremsstrahlung than pions

Bremsstrahlung



Covered kinematic range

- Selection: $Q^2 < 1.296 \cdot 10^{-3} \,\text{GeV}^2/c^2$
- Trigger on energy deposit in central part of electromagnetic calorimeter ($E_{\rm trig} > 68~{\rm GeV}$)
- Minimum energy of $\pi^0 \to \text{maximum scattering}$ angle of π^- in Gottfried-Jackson frame

