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Outline

» “Intrinsic” sea versus “extrinsic” sea in
hadrons

o Extraction of “intrinsic” u, d, and s sea in
the nucleons

» Separation of “connected sea” from
“disconnected sea” for light-quark sea

* Opportunities at JLab Upgrade and at
EIC for intrinsic sea

Work in collaboration with Wen-Chen Chang




Search for the “intrinsic” quark sea

In 1980, Brodsky, Hoyer, Peterson, Sakai (BHPS)
suggested the existence of “intrinsic” charm

| p) = P, | uud) + P, |uudQQ> Loeenn,
The "intrinsic"-charm from |uudcc) 1s "valence'"-like

and peak at large x unlike the "extrinsic" sea (g — cc¢)
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“Evidence” for the “intrinsic” charm (I1C)
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Gunion and Vogt (hep-ph/9706252);
Barger, Halzen and Keung (PRD 25 (1982) 112)

Tantalizing evidence for intrinsic charm

(subjected to the uncertainties of charmed-
quark parametrization in the PDF, however)  °



A recent global fit by CTEQ-TEA to extract
intrinsic-charm (JHEPO2 (2018) 059)

CT14 intrinsic charm parton distribution functions
from CTEQ-TEA global analysis

Tie-Jiun Hou,” Sayipjamal Dulat,’>? Jun Gao,® Marco Guzzi,”9 Joey Huston,?
Pavel Nadolsky,” Carl Schmidt,? Jan Winter,? Keping Xie®* and C.-P. Yuan?
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We see from figure 5 that large amounts of intrinsic charm are disfavored for all models
under scrutiny. A mild reduction in y2, however, is observed for the BHPS fits, roughly at

()10 = 1%, both in the CT14 and CT14HERA?2 frameworks.

No conclusive evidence for intrinsic-charm
(However, possible new evidence from LHC) ¢




PHYSICAL REVIEW LETTERS 128, 082001 (2022)

Study of Z Bosons Produced in Association with Charm in the Forward Region

R. Aaij et al.”
(LHCb Collaboration)
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charm jets is determined in intervals of Z-boson rapidity in the range 2.0 < y(Z) < 4.5. A sizable
enhancement is observed in the forwardmost v(Z) interval. which could be indicative of a valencelike

intrinsic-charm component in the proton wave function.

..However, conclusion about whether the proton contains valence-
hke intrinsic charm can only be drawn after incorporating these
results into global PDF analyses”



Search for the “intrinsic” light-quark sea

| p) :P3q |uud>+PSq |uudQQ>_|_ ......

Some tantalizing, but not conclusive,
experimental evidence for intrinsic-charm so far

Are there experimental evidences for the intrinsic

light-quark sea: [uuduit), | uuddd), | uudss) ?

2 2
P, ~1/m,

The “intrinsic” sea for lighter
qguarks have larger probabilities! :



x-distribution for “intrinsic” light-quark sea
| p)y =B, |uud)+ P, |uudQQ)+------

Brodsky et al. (BHPS) give the following probability
for quark i (mass m;) to carry momentum x;
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How to separate the “intrinsic sea” from the
“extrinsic sea’?

e Select experimental observables which have no
contributions from the “extrinsic sea”

d — u has no contribution from extrinsic sea (g — gq)

and 1s sensitive to "intrinsic sea" only

u d
ngv< — ng<
u d

How to measure d - i1 ?

10




d (x) —u(x) from SIDIS and Drell-Yan
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HERMES SIDIS data, PRL 81, 5519 (1998)
Drell-Yan data from Fermilab E866
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Comparison between the d (x)—u(x) data

with the intrinsic-sea model

S e E866 .
B qH BHPS The data are in good
4 — BHPS (u=0.5 GeV) .
\-, __mHpse0scev) | agreement with the BHPS
model after evolution from the
0.5 initial scale p to Q?2=54 GeV?
The difference in the
0 two 5-quark
I I I I
0 01 02 03 04 components can also
X be determined
(W. Chang and JCP , PRL 106, 252002 (2011))
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How to separate the “intrinsic sea” from
the “extrinsic sea”?

* “Intrinsic sea” and “extrinsic sea” are expected
to have different x-distributions

— Intrinsic sea 1s ‘““valence-like” and 1s more
abundant at larger x

— Extrinsic sea 1s more abundant at smaller x

An example 1s the s(x) + 5 (x) distribution

13



Extraction of the intrinsic strange-quark sea
from the HERMES s(x)+5(x) data

s(x)+s(x) extracted from

»
I;L 0.3 - %ﬁ H oe HERMES | HERMES Semi-inclusive DIS
% ? kaon data at (Q°) =2.5 GeV~
0.2 }
¢
A The data appear to consist
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. it + ++ t (intrinsic and extrinsic?)
| | 1 11 ll ’ | | l* | |
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HERMES collaboration, Phys. Lett.

B666, 446 (2008)
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Comparison between the s(x) +s(x) data

with the intrinsic 5-¢ model
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X
(W. Chang and JCP, PL B704, 197(2011))
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How to separate the “intrinsic sea” from the
“extrinsic sea’?

e Select experimental observables which have no
contributions from the “extrinsic sea”

d +1i1 — s — 5 has no contribution from extrinsic sea (g > qq)

and 1s sensitive to "1intrinsic sea" only

16




Comparison between the 7 (x)+d (x) - s(x)— 5 (x)

data with the intrinsic 5-¢g model
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d (x) +u(x) from CTEQ6.6
s(x)+5(x) from HERMES

u+d —s—5 has
no contribution

from extrinsic sea

A valence-like x-distribution 1s observed
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Comparison between the 7 (x)+d (x) - s(x) —5(x)

data with the intrinsic 5-¢ model

® HERMES+CTEQ
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(not sensitive to extrinsic sea)

A valence-like distribution
x  peaking at x ~ 0.1 1s observed
(W. Chang and JCP, PL B704, 197(2011))
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Extraction of the various five-quark
components for light quarks
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xS(x)

Latest HERMES result on x5(x)
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Newer 2014 result obtained
with HERMES kaon
fragmentation function
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PHYSICAL REVIEW D 89, 097101 (2014)
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Newer 2014 result obtained
with the DSS kaon
fragmentation function
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Dependence of s +5 extraction on

the kaon fragmentation functions
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Other possible implications

* Search for intrinsic strange sea with SIDIS
at JLab.

* Spin-dependent observables of intrinsic sea?
* Intrinsic sea for hyperons and mesons?

 Connection between intrinsic sea and lattice
QCD formalism?

22



week ending

PRL 109, 252002 (2012) PHYSICAL REVIEW LETTERS 21 DECEMBER 2012

Connected-Sea Partons

Keh-Fei Liu," Wen-Chen Chang,” Hai- Yang Cheng,” and Jen-Chich Peng’

- " 5 " Two sources of sea:
onnected sea ISCconnecied sea
o Connected sea (CS) and

JJ Disconnected sea (DS)
R CS and DS have

different Bjorken-x and
flavor dependencies

(valence-like) (sea-like)

e x —dependence: at small x, CS ~x"*; DS~ x™"
e Flavor dependence: & and d have both CS and DS;
s+ 1s entirely DS 23



Can one separate the “connected sea” from
the “disconnected sea” for u + d ?

A) |Lattice QCD shows that disconnected sea is roughly
SU(3)-flavor independent

R = zxim =0.857(40) for disconnected sea
X/ uri
B) [1/7(.7(:) T 67(’X’.)]discomrlected sea [S(X) T E(X)] / R

(since s,s 1s entirely from the disconnected sea)

C) [(x)+d(x) =

connected sea

:17(.X') + 67(.76): PDF [Z/_l(X) + J(x)]disconnected S€a 74




week endin

PRL 109, 252002 (2012) PHYSICAL REVIEW LETTERS 21 DECEMBER 2012

Connected-Sea Partons

Keh-Fei Liu," Wen-Chen ChangF Hai- Yang Cheng.” and Jen-Chieh Peng’

Connected sea Disconnected sea o - x{ul+§l)z
5, T, J, T, ~oaf i:g:g;cno ]
+
) 0 o t < 0.2 4, -
‘___t j__t ; +4+ { fLH._
(valence-like) (sea-like) 107 T 10
e Connected sea component for #(x)+d (x) is valence-like
e For it + d , momenta carried by CS and DS are roughly equal,
at 0°=2.5 GeV~
e A recent preprint performed the first global fit (CT18CS),
with separate CS and DS (T. Hou et al., arX1v:2206.02431) 25




Possibility to search for intrinsic sea at EIC

e Evidences for the existence of "intrinsic" light-quark

seas (i,d ,s) in the nucleons.
e Future SIDIS measurements at EIC could provide very
useful new information on 1ntrinsic strange sea.

e Clear evidence for intrinsic charm remains to be found

Charm jets as a probe for strangeness at the future Electron-Ion Collider

Miguel Arratia ,1’2 Yulia Furletova ,2 T.J. Hobbs ,3’4‘5 Fredrick Olness ,3 and Stephen J. Sekula P
PHYSICAL REVIEW D 103, 074023 (2021)
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Article

Evidenceforintrinsiccharmquarksinthe
proton Nature 608, 483-487 (2022)

S 000000000 h—

https://doi.org/10.1038/s41586-022-04998-2 @PDFCollab@
Received: 18 January 2022

The theory of the strong force, quantum chromodynamics, describes the proton in

Accepted: 20 June 2022 terms of quarks and gluons. The proton is a state of two up quarks and one down
Published online: 17 August 2@ guar.l( bound bygluons,butq‘uantum theory pre‘dicts thatin addition thereis an
infinite number of quark-antiquark pairs. Both light and heavy quarks, whose mass

isrespectively smaller or bigger than the massofthe proton, arerevealed inside the
protoninhigh-energy collisions. However, itis unclear whether heavy quarks also
existas apartofthe proton wavefunction, which is determined by non-perturbative

0.031 dynamics and accordingly unknown: so-called intrinsic heavy quarks'. It has been
argued for a long time that the proton could have asizable intrinsic component of
0.02+ the lightest heavy quark, the charm quark. Innumerable efforts to establish intrinsic
charminthe proton? have remained inconclusive. Here we provide evidence for
0.014 intrinsic charmby exploiting a high-precision determination of the quark-gluon
% content of the nucleon® based on machine learning and alarge experimental dataset.
S ot We disentangle the iptrinsi =anticharm pairs arising
fromgiTenergy radiation®. We establish the existence of intrinsic char
-0.014 Intrinsic charm, NNLO match (PDFU + MHOU) -standard-deviation level, withamomentum distribution in remarkable agreemen
e Efll—tlsosn;:;:rjin cloud model with model predictions**.We confirm these findings by comparing them to very recent
-0.02 dataonZ-boson productionwith charmjets from the Large Hadron Collider beauty

02 0.4 06 08

Very recent Nature paper on intrinsic charm

27



Conclusions

e Evidences for the existence of "intrinsic" light-quark

seas (u,d,s) 1n the nucleons
e Clear evidence for intrinsic charm remains to be found
e The concept of connected and disconnected seas 1n
Lattice QCD offers useful insights on the flavor- and

x-dependencies of the sea

e Future SIDIS measurements at JLab could provide very
useful new information on intrinsic strange sea

e Intrinsic charm in the nucleons can be explored at EIC

28
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