Investigating the Structure of Matter with the AMBER Experiment

Apparatus for Meson and Baryon Experimental Research Catarina Quintans, LIP-Lisbon, Portugal On behalf of the AMBER collaboration

A new fixed-target experiment at the M2 beamline of the CERN/SPS north-area

Motivation: the structure of hadronic matter

Proposed measurements at AMBER

	Physics	Beam	Beam	Trigger	Beam		Earliest	Hardware
Program	Goals	Energy	Intensity	Rate	Туре	Target	start time,	additions
		[GeV]	[s ⁻¹]	[kHz]			duration	
muon-proton	Precision					high-		active TPC,
elastic	proton-radius	100	$4 \cdot 10^{6}$	100	μ^{\pm}	pressure	2022	SciFi trigger,
scattering	measurement					H2	1 year	silicon veto,
Hard								recoil silicon,
exclusive	GPD E	160	$2 \cdot 10^{7}$	10	μ^{\pm}	$\rm NH_3^{\uparrow}$	2022	modified polarised
reactions							2 years	target magnet
Input for Dark	\overline{p} production	20-280	$5 \cdot 10^{5}$	25	р	LH2,	2022	liquid helium
Matter Search	cross section					LHe	1 month	target
			_					target spectrometer:
\overline{p} -induced	Heavy quark	12, 20	$5 \cdot 10^{7}$	25	\overline{P}	LH2	2022	tracking,
spectroscopy	exotics						2 years	calorimetry
Drell-Yan	Pion PDFs	190	$7 \cdot 10^{7}$	25	π^{\pm}	C/W	2022	
							1-2 years	
Drell-Yan	Kaon PDFs &	~ 100	10 ⁸	25-50	K^{\pm}, \overline{p}	$\rm NH_3^{\uparrow}$,	2026	"active absorber",
(RF)	Nucleon TMDs					C/W	2-3 years	vertex detector
	Kaon polarisa-						non-exclusive	
Primakoff	bility & pion	~ 100	$5 \cdot 10^{6}$	> 10	K^{-}	Ni	2026	
(RF)	life time						1 year	
Prompt							non-exclusive	
Photons	Meson gluon	≥ 100	$5 \cdot 10^{6}$	10-100	K^{\pm}	LH2,	2026	hodoscope
(RF)	PDFs				π^{\pm}	Ni	1-2 years	
K-induced	High-precision							
Spectroscopy	strange-meson	50-100	$5 \cdot 10^{6}$	25	K^{-}	LH2	2026	recoil TOF,
(RF)	spectrum						1 year	forward PID
	Spin Density							
Vector mesons	Matrix	50-100	$5 \cdot 10^{6}$	10-100	K^{\pm}, π^{\pm}	from H	2026	
(RF)	Elements					to Pb	1 year	

...as expressed in the LoI: https://arxiv.org/pdf/1808.00848.pdf

Phase I

AMBER Proposal Phase I: http://cds.cern.ch/record/2676885?In=en

Phase II

Proposal in preparation

AMBER timeline

Phase I

- Proton radius measurement from µp elastic scattering
- Antiproton production cross section
- π^{\pm} induced Drell-Yan for pion structure

Already approved!

Phase II

Measurements using mostly kaon beams, possibly RF-separated.

Presently under study. A proposal is in preparation.

Emergence of hadron mass

AMBER: A QCD facility devoted to the study of EHM and related matters

Dynamic Chiral Symmetry Breaking leads to the quarks and gluons to rapidly acquire a running mass in the infrared limit

Test it by measurements accessing the pion and kaon structure

Mass Budgets

ADDOBER Drell-Yan at AMBER: access to the pion structure

Experimental Research

Pion:

- The lightest of hadrons
- Goldstone boson of QCD
- Structure is poorly known

Pion-induced Drell-Yan is the most direct way to access the structure of pions.

DY measurements were done by past experiments: NA3 and NA10 at CERN, E615 at Fermilab. More recently: COMPASS at CERN 7

Pion-induced Drell-Yan with both beam charges

Pion-induced Drell-Yan expected statistics

- A conventional hadron beam, but both beam charges
- Time sharing 3:1 (π^+ : π^-) to minimize uncertainty in sea/valence observable
- Beam particle identification using Cherenkov counter detectors

Table 7: Statistics collected by earlier experiments (top rows), compared with the achievable statistics of the proposed experiment (bottom rows), in 213 days (π^+ beam) + 67 days (π^- beam).

Experiment	Target type	Beam energy (GeV)	Beam type	Beam intensity (part/sec)	DY mass (GeV/c ²)	DY events
E615	20 cm W	252	π^+ π^-	17.6×10^7 18.6×10^7	4.05 - 8.55	5000 30000
NA3	30 cm H ₂	200	π^+ π^-	2.0×10^7 3.0×10^7	4.1 - 8.5	40 121
	6 cm Pt	200	π^+ π^-	2.0×10^7 3.0×10^7	4.2 - 8.5	1767 4961
NA10	$120 \mathrm{cm}\mathrm{D}_2$	286 140	π^{-}	65×10^7	4.2 - 8.5 4.35 - 8.5	7800 3200
	12 cm W	286 194 140	π^{-}	65×10^7	4.2 - 8.5 4.07 - 8.5 4.35 - 8.5	49600 155000 29300
COMPASS 2015 COMPASS 2018	110 cm NH ₃	190	π^{-}	7.0×10^{7}	4.3 - 8.5	35000 52000
	75 cm C	190	π^+	1.7×10^{7}	4.3 - 8.5 4.0 - 8.5	21700 31000
AMBER		190	π^{-}	6.8×10^{7}	4.3 - 8.5 4.0 - 8.5	67000 91100
	12 cm W	190	π^+	0.4×10^{7}	4.3 - 8.5 4.0 - 8.5	8300 11700
		190	π^{-}	1.6×10^{7}	4.3 - 8.5 4.0 - 8.5	24100 32100

From the AMBER proposal

AMBER phase I: Drell-Yan setup

Experimental hall

FVTX detector from PHENIX@RHIC

Gluon content in the pion

Simultaneously with Drell-Yan, also J/ ψ and ψ (2S) production data are collected.

- Large statistics on J/ψ production at dimuon channel
- Inclusive: due to the hadron absorber, we cannot distinguish prompt production from the rest
- Expected significant feed-down: ψ (2S), χ_{c1} , χ_{c2}
- In the low- p_{T} regime

un

DIPENJOSUO?

- Expected to have dominance of $2 \rightarrow 1$ processes
- Use J/ψ polarization to distinguish production mechanism

 $\lambda_{\theta}^{\rm CS}$

Kaons provide a window to the region of interference between the Higgs mechanism and the EHM mechanism

The only available experimental data:

- NA3 \rightarrow 200 GeV K⁻ beam on 6 cm Pt target
 - > 700 kaon-induced Drell-Yan events

* AMBER (LoI): Assumed an RF-separated beam of 2×10^7 kaons/second.

Latest news: this intensity with RF-separated beam is un-feasible.

But the DY measurement with conventional beam remains competitive.

Z-F. Cui, et al. EPJC80(2020)1064, H-W. Lin et al., PRD103(2021)014516

Kaon structure: valence and sea

First-ever kaon sea-valence separation: using both charges kaon beams

$$R_{s/v} = \frac{\sigma^{K+C}}{\sigma^{K-C} - \sigma^{K+C}} \longrightarrow \propto u_v^K u_v^p$$

Higher beam momentum: access to lower $x_{_{K}}$

Simulations to be re-done. If using a conventional (non-RF-separated) beam, it might be more advantageous to go for E_{beam}=190 GeV

- More statistics
- Better sensitivity at lower x_{κ}

- Kaon-induced J/Ψ production data collected in parallel with kaon-induced Drell-Yan
- Large statistics

aratus for Meson and Baryor Experimental Research

- Model-dependent access to the gluon distribution in kaons
- J/Ψ production cross section (LO):
 - gluon-gluon fusion
 - quark-antiquark annihilation

 $\begin{array}{c} \mathcal{K}^{-}(\overline{u}s) + p(uud) \propto gg + \left[\overline{u}_{v}^{K}u_{v}^{p}\right] + \left[\overline{u}_{v}^{K}u_{s}^{p} + s_{v}^{K}s_{s}^{p}\right] + \left[\overline{u}_{s}^{K}u_{v}^{p}\right] + \left[\overline{u}_{s}^{K}u_{v}^{p} + u_{s}^{K}\overline{u}_{s}^{p} + s_{s}^{K}\overline{s}_{s}^{p} + \overline{s}_{s}^{K}s_{s}^{p}\right] \\ \mathcal{K}^{+}(u\overline{s}) + p(uud) \propto gg + \left[---\right] + \left[u_{v}^{K}\overline{u}_{s}^{p} + \overline{s}_{v}^{K}s_{s}^{p}\right] + \left[\overline{u}_{s}^{K}u_{v}^{p}\right] + \left[\overline{u}_{s}^{K}u_{s}^{p} + u_{s}^{K}\overline{u}_{s}^{p} + \overline{s}_{s}^{K}s_{s}^{p}\right] \\ \mathbf{val-val} \qquad val-sea \qquad sea-val \qquad sea-sea \end{array}$

Using Color Evaporation Model (Int.J.Mod.Phys. A 10 (1995) 3043) and JAM18 "pion" PDFs (PRL 121, 152001 (2018))

Hadron charge radii

an expression of the link between EHM and confinement

Two types of measurements: **lepton-proton scattering** and **hydrogen spectroscopy**, 15 leading to discrepant results

Proton radius from lepton-p elastic scattering

The proton charge radius can be accessed via the electromagnetic form factors. Experimentally, AMBER will measure the **elastic muon-proton scattering**:

aratus for Meson and B Experimental Research

$$\frac{d\sigma}{dQ^2} = \frac{\pi\alpha^2}{Q^4 m_p^2 \vec{p}_{\mu}^2} \left[\left(G_E^2 + \tau G_M^2 \right) \frac{4E_{\mu}^2 m_p^2 - Q^2 (s - m_{\mu}^2)}{1 + \tau} - G_M^2 \frac{2m_{\mu}^2 Q^2 - Q^4}{2} \right]$$

$$\langle r_E^2 \rangle = -6\hbar^2 \left. \frac{\mathrm{d}G_E(Q^2)}{\mathrm{d}Q^2} \right|_{Q^2 \to 0}$$

ep elastic scattering:

New PRad measurements favor low values of r (Nature, 575 (2019) 147)

PRad form factors in clear contradiction with Mainz data

But: large radiative corrections to take into account

• 100 GeV muon beam

aratus for Meson and Baryon Experimental Research

- Active target TPC filled with pressurised hydrogen
- Goal: 70 million elastic scattering events in $10^{-3} < Q^2 < 4x10^{-2} \text{ GeV}^2$
- Small radiative corrections
- Precision on proton radius ~0.01 fm

Meson charge radii

 $r_{\pi}^2 = -\frac{6}{F_{\pi}(0)} \frac{d}{dQ^2} F_{\pi}(Q)$

Pion and kaon radii: measured with much less precision than that of proton

Pion radius

Measurements of pion scattering at low Q^2 , done in the 1980's

r_{_}=0.659 ± 0.004 fm (PDG 2020)

Kaon radius

Practically unknown

 r_{κ} =0.560 ± 0.031 fm (PDG 2020)

Kaon charge radius at AMBER

For unstable particles, electron scattering can only be done in inverse kinematics

• Large Q² range : higher sensitivity to the charge distribution $\langle r_{F}^{2} \rangle$

Beam	E _{beam}	Q_{max}^2	Relative charge-radius
	[GeV]	[GeV ²]	effect on σ(Q²)
π	280	0,268	~54%
К	280	0,15	~30%
K	80	0,021	~5%
К	50	0,009	~2-3%
р	280	0,070	~28%

A recent idea to be explored further...

A detour: antiproton production cross section

Dark Matter searches in Astroparticle Physics:

Search for excess in antiparticle fluxes

We need good accuracy in the predicted/measured natural fluxes

Fraction origin of \overline{p} from cosmic ray interactions with the interstellar medium: very important to measure p-He and He-p reactions

AMBER impact on the \overline{p} flux source term

AMBER can vary the proton beam energy in the range 50 - 250 GeV

Antiproton cross section at AMBER

Summary

The AMBER experiment at the CERN M2 beamline is a new "QCD Facility" to investigate the Emergence of Hadron Mass

AMBER phase I was approved in December 2020, for measurements on:

- Proton radius from muon-proton elastic scattering
- Antiproton cross-sections input for Dark Matter searches
- Pion structure from pion-induced Drell-Yan and Charmonium production

An upgrade of the M2 beamline will provide radio-frequency separated hadron beams. High purity kaon beams are being proposed for a phase II of AMBER: Light meson spectroscopy using kaon beams Gluon content in the kaon from direct-photon production Kaon charge radius from elastic kaon-electron scattering

Conventional beams from improved beamline and with improved beam telescope are being considered as an alternative for kaon-induced Drell-Yan, in order to study kaon structure.