Hadron structure as seen by the AMBER experiment

Catarina Quintans (LIP-Lisboa), on behalf of the AMBER Collaboration

10 March 2022, CPHI 2022

F(

AMBER: at the North Area of the CERN-SPS

Apparatus for Meson and Baryon Experimental Research

Physics possibilities at AMBER

	Physics	Beam	Beam	Trigger	Beam		Earliest	Hardware	
Program	Goals	Energy	Intensity	Rate	Туре	Target	start time,	additions	
		[GeV]	[s ⁻¹]	[kHz]			duration		
muon-proton	Precision					high-		active TPC,	
elastic	proton-radius	100	$4 \cdot 10^{6}$	100	μ^{\pm}	pressure	2022	SciFi trigger,	
scattering	measurement					H2	1 year	silicon veto,	
Hard								recoil silicon,	
exclusive	GPD E	160	$2 \cdot 10^{7}$	10	μ^{\pm}	NH_3^{\uparrow}	2022	modified polarised	
reactions							2 years	target magnet	
Input for Dark	\overline{p} production	20-280	$5 \cdot 10^{5}$	25	р	LH2,	2022	liquid helium	>
Matter Search	cross section					LHe	1 month	target	
								target spectrometer:	
\overline{p} -induced	Heavy quark	12, 20	$5 \cdot 10^{7}$	25	\overline{P}	LH2	2022	tracking,	
spectroscopy	exotics						2 years	calorimetry	l l
Drell-Yan	Pion PDFs	190	$7 \cdot 10^7$	25	π^{\pm}	C/W	2022		- I '
							1-2 years		
Drell-Yan	Kaon PDFs &	~ 100	10 ⁸	25-50	K^{\pm}, \overline{p}	$\rm NH_3^{\uparrow}$,	2026	"active absorber",	
(RF)	Nucleon TMDs					C/W	2-3 years	vertex detector	
	Kaon polarisa-						non-exclusive		
Primakoff	bility & pion	~ 100	$5 \cdot 10^{6}$	> 10	K^{-}	Ni	2026		
(RF)	life time						1 year		
Prompt							non-exclusive		
Photons	Meson gluon	≥ 100	$5 \cdot 10^{6}$	10-100	K^{\pm}	LH2,	2026	hodoscope	1
(RF)	PDFs				π^{\pm}	Ni	1-2 years		
K-induced	High-precision								
Spectroscopy	strange-meson	50-100	$5 \cdot 10^{6}$	25	K^{-}	LH2	2026	recoil TOF,	
(RF)	spectrum						1 year	forward PID	
	Spin Density								
Vector mesons	Matrix	50-100	$5 \cdot 10^{6}$	10-100	K^{\pm}, π^{\pm}	from H	2026		
(RF)	Elements					to Pb	1 year		

...as expressed in the LoI: https://arxiv.org/pdf/1808.00848.pdf

Phase-I

AMBER Proposal Phase-I:

http://cds.cern.ch/record/2676885?In=en

Phase-II

Proposal in preparation

M2 beamline

At 190 GeV/c:

Negative: 97% π⁻, 2.5% K⁻, < 1% p

AMBER

• Positive: 74% p, 24% π^+ , 2% K^+

Emergence of Hadron Mass

EHM at AMBER

The Emergence of Hadron Mass is the leitmotiv for the various proposed measurements.

EHM is key for understanding QCD:

- Hadron charge radii
- Hadron masses
- Hadron spectroscopy
- Hadron structure

- ... and all this to be validated by:
- Lattice calculations
- Experimental measurements

The pion structure

Extractions including **Drell-Yan data** and **leading-neutron DIS data** JAM, arXiv:2108.05822

7

Drell-Yan at AMBER: access to pion structure

Pion-induced Drell-Yan at AMBER

Table 7: Statistics collected by earlier experiments (top rows), compared with the achievable statistics of the proposed experiment (bottom rows), in 213 days (π^+ beam) + 67 days (π^- beam).

Experiment	Target type	Beam energy (GeV)	Beam type	Beam intensity (part/sec)	DY mass (GeV/c ²)	DY events
E615	20 cm W	252	π^+ π^-	17.6×10^{7} 18.6×10^{7}	4.05 - 8.55	5000 30000
NA3	30 cm H ₂	200	π^+ π^-	2.0×10^7 3.0×10^7	4.1 - 8.5	40 121
	6 cm Pt	200	$\pi^+ \ \pi^-$	2.0×10^7 3.0×10^7	4.2 - 8.5	1767 4961
NA10	120 cm D ₂	286 140	π^{-}	65×10^7	4.2 - 8.5 4.35 - 8.5	7800 3200
	12 cm W	286 194 140	π^{-}	65×10^7	4.2 - 8.5 4.07 - 8.5 4.35 - 8.5	49600 155000 29300
COMPASS 2015 COMPASS 2018	110 cm NH ₃	190	π^{-}	7.0×10^{7}	4.3 - 8.5	35000 52000
	75 cm C	190	π^+	1.7×10^{7}	4.3 - 8.5 4.0 - 8.5	21700 31000
		190	π^{-}	6.8×10^{7}	4.3 - 8.5 4.0 - 8.5	67000 91100
	12 cm W _	190	π^+	0.4×10^7	4.3 - 8.5 4.0 - 8.5	8300 11700
		190	π^{-}	1.6×10^{7}	4.3 - 8.5 4.0 - 8.5	24100 32100

AMBER proposal

Gluon content in the pion

What can we learn from J/ψ production at AMBER?

- Large statistics on J/ψ production at dimuon channel
- Inclusive: due to the hadron absorber, we cannot distinguish prompt production from the rest
- Expected significant feed-down: $\psi(2S)$, χ_{c1} , χ_{c2}
- In the low-pT regime
- Expected to have dominant contribution from $2 \rightarrow 1$ processes
- Use J/ψ polarization to distinguish production mechanism:

γ_θ

Upgraded M2 beamline: RF-separated beams

Radio-frequency separation is a technique where some particle species end dumped in a beam stopper, while the chosen ones (dependent on distance "I") provide a high purity, still intense, beam.

$$\Delta \phi \approx \frac{\pi f L}{c} \frac{m_w^2 - m_u^2}{p^2}$$

R&D from CERN Beams Department

- K^{\pm} beams with 60 100 GeV/c
- p beam with 80 110 GeV/c

But: how high can the beam intensity be?

Not enough for kaon-induced Drell-Yan... $^{11}_{\rm Still,}$ an optimal option for kaon polarizabilities, kaon charge radius, spectroscopy,...

Kaon structure: u_k / u_{π}

Kaon structure: a window to the region of interference between the Higgs mechanism and the EHM mechanism

Kaon structure: valence and sea

First-ever kaon sea-valence separation: using both charges kaon beams

$$R_{s/v} = \frac{\sigma^{K^+C}}{\sigma^{K^-C} - \sigma^{K^+C}} \longrightarrow \propto u_v^K u_v^p$$

Higher beam momentum: access to lower x_{k}

Simulations to be re-done. If using a conventional (non-RF-separated) beam, it might be more advantageous to go for E_{beam} =190 GeV

Kaon-induced Drell-Yan in AMBER

In a fixed-target experiment, in order to increase the geometrical acceptance:

Compress the spectrometer

(AMBER Lol)

For access to semi-inclusive processes:

"Active absorber":

Magnetic field

Large area

Compact

Trackers

•

A telescope upstream of the active absorber

J/Ψ production: an access to the gluon content in the kaon

Using Color Evaporation Model (Int.J.Mod.Phys. A 10 (1995) 3043)

Another way: **Prompt-photons** clean access to the gluon distribution in kaon

DY and charmonia

 x_F

0

p

0

Prompt photons

Direct access to the gluon PDF at $x_g^{K} > 0.05, Q^2 \sim p_T$

background K⁺ beam: minimize bkg

100 GeV K⁺ beam on a long liquid H₂ target

Kaon-induced prompt-photon production

Latest RF-separation studies suggest that this statistics goal must be re-assessed (scale-down by factor 20-40)

Experiment	Target	Beam	Beam Intensity	Beam Energy	$\int \mathcal{L}$	p_T range	prompt-photon
	type	type	(part/sec)	(Gev)	(pp -)	(Gev/c)	events
WA70	$1 \mathrm{m} \ \mathrm{lH}_2$	π^+	2.5×10^6	280	1.3	$4 < p_T < 7$	
		π^{-}	1.25×10^7	280	3.5	$4 < p_T < 7$	
AMBER	$2 \mathrm{m} \mathrm{lH}_2$	K^+	2×10^7	100	50	$p_T > 2.5$	$3.4 imes 10^6$
		π^+	$2 imes 10^7$	100	50	$p_T > 2.5$	$3.4 imes 10^6$
		I.					

Meson radii

 $r_{\pi}^2 = -\frac{6}{F_{\pi}(0)} \frac{d}{dQ^2} F_{\pi}(Q^2)$

Pion and kaon radii: an expression of the link between EHM and confinement

Pion radius

Measurements of pion scattering at low Q^2 , done in the 1980's

 r_{π} =0.659 ± 0.004 fm (PDG 2020)

Kaon radius

Practically unknown

 r_{κ} =0.560 ± 0.031 fm (PDG 2020)

Kaon charge radius

80 GeV RF-separated beam: kaon – electron elastic scattering, to access the kaon form factor

 $0.001 < Q^2 < 0.07 \text{ GeV}^2$

Beam	<i>E_b</i> [GeV]	Q ² _{max} [GeV ²]	<i>E'_{b,min}</i> [GeV]	Relative charge-radius effect on c.s. at $oldsymbol{Q}_{max}^2$
π	190	0.176	17.3	~40%
K	190	0.086	105.7	~20%
	80	0.066	59.9	~15%
	50	0.037	41.3	~8%

The proton charge radius

Two types of measurements: **lepton-proton scattering** and **hydrogen spectroscopy**, leading to discrepant results

Proton radius at AMBER

The proton charge radius can be accessed via the electromagnetic form factors. Experimentally, AMBER will measure the **elastic muon-proton scattering** for this:

https://amber.web.cern.ch/

...In summary

The AMBER experiment at the CERN M2 beamline is a new "QCD Facility" to investigate the Emergence of Hadron Mass

AMBER phase-I was approved in December 2020, for measurements on

- Proton radius from muon-proton elastic scattering
- Pion structure from pion-induced Drell-Yan and Charmonium production
- Antiproton cross-sections input for Dark Matter searches (not discussed here)

An upgrade of the M2 beamline will provide radio-frequency separated hadron beams. High purity kaon beams are being proposed for a phase-II of AMBER:

- Gluon content in the kaon from direct-photon production
- Kaon charge radius from elastic kaon-electron scattering
- Light meson spectroscopy using kaon beams (not discussed here)

Conventional beams from improved beamline and with improved beam telescope are being considered as an alternative for kaon-induced Drell-Yan, in order to study kaon structure. 22