

Hadron structure at AMBER

Carlos Azevedo on behalf of AMBER collaboration (cdazevedo@ua.pt)

4th May 2022

DIS2022 – Santiago de Compostela, Spain

AMBER and the emergence of hadron mass

- The question:
 - How to understand that $M_{\pi}/M_{p} \sim 1/7$ while from constituent-quarks model one would expect ~2/3?

• Only 1% of the proton mass is due to the Higgs mechanism.

Pion

- \bullet M $_{\pi}\sim 140 {
 m MeV}$
- Spin 0
- 2 light valence quarks

Kaon

- $M_K \sim 490 MeV$
- Spin 0
- 1 light and 1 "heavy" valence quarks

Proton

- $M_p \sim 940 \text{MeV}$
- Spin 1/2
- 3 light valence quarks

Apparatus for Meson and Baryon Experimental Research

AMBER and the emergence of hadron mass

• Dynamic Chiral Symmetry Breaking of QCD leads to the quarks and gluons rapidly acquiring a running mass in the infrared limit

AMBER: The oportunity

- In the North Area at CERN, SPS beam of high-intensity and high-energy is hitting several primary targets. The secondary beams obtained supply different beamlines
- At the M2 beamline, unique-in-the-world beams are available:
 - Muon beams of both charges
 - Hadron beams of both charges
 - Wide range of momenta: 50 280 GeV/c
 - Intensity limited by radioprotection

AMBER: NA66

• AMBER:

- Apparatus for Meson and Baryon Experimental Research
- Approved as NA66 by the CERN Research Board in December 2020
- Divided in 2 phases
 - Phase-1 (Approoved)
 - Proton Radius
 - Pion PDFs through Drell-Yan and Charmonium production
 - Antiproton production cross sections for Dark-Matter search
 - Phase-II (requiring RF-separeted beams to M2)
 - Proposal submition planned to 2022
 - Kaon and meson gluon PDFs
 - Strange spectroscopy
 - Meson charge radii

https://arxiv.org/pdf/1808.00848.pdf

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Letter of Intent:
A New QCD facility at the M2 beam line of the CERN SPS'
COMPASS++[†]/AMBER[†]

B. Adams^{13,12}, C.A. Aidala¹, R. Akhunzyanov¹⁴, G.D. Alexeev¹⁴, M.G. Alexeev⁴¹, A. Amoroso^{41,42} V. Andrieux 4, N.V. Anfimov 4, V. Anosov 4, A. Antoshkin 4, K. Augsten 14,32, W. Augustyniak 6 C.D.R. Azevedo⁴, A. Azhibekov², B. Badelek⁴⁷, F. Balestra^{41,42}, M. Ball⁸, J. Barth⁹, R. Beck⁸, Y. Bedfer²⁰, J. Berenguer Antequera^{41,42}, J.C. Bernauer^{34,45}, J. Bernhard¹⁹, M. Bodlak³¹, P. Bordalo²³ F. Bradamante³⁹, A. Bressan^{38,39}, M. Büchele¹⁶, V.E. Burtsev⁴⁰, W.-C. Chang³⁵, C. Chatterjee¹ X. Chen²¹, M. Chiosso^{41,42}, A.G. Chumakov⁴⁰, S.-U. Chung^{17,b}, A. Cicuttin^{39,e}, P. Correia⁴, M.L. Crespo^{39,c}, S. Dalla Torre³⁹, S.S. Dasgupta¹¹, S. Dasgupta^{38,39}, N. Dashyan⁵⁰, I. Denisenko¹⁴ O.Yu. Denisov⁴², L. Dhara¹¹, N. d'Hose²⁰, F. Donato⁴³, S.V. Donskov³³, N. Doshita⁴ Ch. Dreisbach¹⁷, W. Dünnweber^d, R.R. Dusaev⁴⁰, M. Dziewiecki⁴⁸, A. Dzyuba¹⁸, A. Efremov¹ P. Egelhof¹⁵, A. Elagin¹³, P.D. Eversheim⁸, M. Faessler^d, J. Fedotova²⁶, A. Ferrero²⁰, M. Finger³ M. Finger jr.³¹, H. Fischer¹⁶, C. Franco²³, J.M. Friedrich¹⁷, V. Frolov¹⁴, A. Futch⁴⁴, F. Gautheron⁴⁴ O.P. Gavrichtchouk¹⁴, S. Gerassimov^{28,17}, S. Gevorkyan¹⁴, Y. Ghandilyan⁵⁰, J. Giarra²⁵, I. Gnesi^{41,4} M. Gorzellik 16, A. Grasso 41.42, A. Gridin 14, M. Grosse Perdekamp 44, B. Grube 17, R.I. Gushterski 14 A. Guskov¹⁴, D. Hahne⁹, G. Hamar³⁹, D. von Harrach²⁵, X. He³, R. Heitz⁴⁴, F. Herrmann¹⁶ N. Horikawa^{30,e}, C.-Y. Hsieh^{35,f}, S. Huber¹⁷, A. Inglessi¹⁸, A. Ilyichev²⁶, T. Isataev², S. Ishimoto⁴⁹ A. Ivanov¹⁴, N. Ivanov⁵⁰, Yu. Ivanshin¹⁴, T. Iwata⁴⁹, M. Jandek³¹, V. Jary³², C.-M. Jen²⁴, R. Joosten⁸ P. Jörg¹⁶, K. Juraskova³², E. Kabuß²⁵, A. Kabyshev², F. Kaspar¹⁷, A. Kerbizi^{38,39}, B. Ketzer⁸ G.V. Khaustov³³, Yu.A. Khokhlov^{33,h}, M. Kim¹, O. Kiselev¹⁵, Yu. Kisselev¹⁴, F. Klein⁹

Program	Physics Goals	Beam Energy [GeV]	Beam Intensity [s ⁻¹]	Trigger Rate [kHz]	Beam Type	Target	Earliest start time, duration	Hardware additions
muon-proton elastic scattering	Precision proton-radius measurement	100	$4 \cdot 10^6$	100	μ^{\pm}	high- pressure H2	2022 1 year	active TPC, SciFi trigger, silicon veto,
Hard exclusive reactions	GPD E	160	2 · 10 ⁷	10	μ^{\pm}	NH [↑] ₃	2022 2 years	recoil silicon, modified polarised target magnet
Input for Dark Matter Search	p production cross section	20-280	5 · 10 ⁵	25	p	LH2, LHe	2022 1 month	liquid helium target
p-induced spectroscopy	Heavy quark exotics	12, 20	5 · 10 ⁷	25	P	LH2	2022 2 years	target spectrometer: tracking, calorimetry
Drell-Yan	Pion PDFs	190	7 · 10 ⁷	25	π^{\pm}	C/W	2022 1-2 years	
Drell-Yan (RF)	Kaon PDFs & Nucleon TMDs	~100	108	25-50	K^{\pm}, \overline{p}	NH ₃ [↑] , C/W	2026 2-3 years	"active absorber", vertex detector
Primakoff (RF)	Kaon polarisa- bility & pion life time	~100	5 · 10 ⁶	> 10	<i>K</i> ⁻	Ni	non-exclusive 2026 1 year	
Prompt Photons (RF)	Meson gluon PDFs	≥ 100	5 · 10 ⁶	10-100	K^{\pm} π^{\pm}	LH2, Ni	non-exclusive 2026 1-2 years	hodoscope
K-induced Spectroscopy (RF)	High-precision strange-meson spectrum	50-100	5 · 10 ⁶	25	<i>K</i> ⁻	LH2	2026 1 year	recoil TOF, forward PID
Vector mesons (RF)	Spin Density Matrix Elements	50-100	5 · 10 ⁶	10-100	K^{\pm}, π^{\pm}	from H to Pb	2026 1 year	

Table 2: Requirements for future programmes at the M2 beam line after 2021. Muon beams are in blue, conventional hadron beams in green, and RF-separated hadron beams in red.

http://cds.cern.ch/record/2676885/files/SPSC-P-360.pdf?version=3

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Phase-I

ERN-SPSC-2019–022 SPSC-P-360 October 13, 2019

Proposal for Measurements at the M2 beam line of the CERN SPS

- Phase-1 -

COMPASS++*/AMBER

Phase-II

B. Adams^{14,13}, C.A. Aidala¹, G.D. Alexeev¹⁵, M.G. Alexeev^{22,43}, A. Amoroso^{22,43}, V. Andrieux^{45,20}, N.V. Anfimov¹⁵, V. Anosov¹⁵, A. Antoshkin¹⁵, K. Augsten^{15,32}, W. Augustyniak⁴⁷, C.D.R. Azevedo⁴, B. Badelek⁴⁸, F. Balestra^{2,43}, M. Ball⁸, D. Banerjee^{65,20}, J. Barth⁸, R. Beck³, J. Berenguer Antequera^{2,24}, J.C. Bernauer^{35,46}, J. Bernhard^{20,6}, M. Bodlad³¹, F. Bradamante⁴⁰, A. Bressan^{39,40}, M. Büchel⁷, V.E. Burtsev¹¹, C. Butler⁷, C. Chatterjee^{9,40}, M. Chiosso^{2,45}, A.G. Chumakov⁴¹, S.-U. Chung^{18,5}, A. Cicuttin^{40,6}, M. Connora³, A. Contin⁶, P. Correia⁴, M.L. Crespo^{40,6}, S. Dalla Torre⁴⁰, S.S. Dasgupta¹¹, S. Dasgupta^{40,11}, N. Dashyam³¹, I. Denisenko¹⁵, O. Yu. Denisov⁴³, L. Dhara¹¹, F. Donato⁴⁴, S.V. Donskov³³, N. Doshita⁵⁰, Ch. Dreisbach¹⁸, W. Dünnweber⁴, R.R. Dusaev⁴¹, A. Dzyuba¹⁹, A. Efremov¹⁵, P. Egelhof¹⁶, F. Ehrler²¹, A. Elagin¹⁴, P.D. Evershein⁸, P. Faccioli²³, M. Friedrich¹⁸, M. Finger¹⁷, M. Finger¹⁷, M. Finger¹⁷, M. Finscher¹⁷, C. Franco³, J.M. Friedrich¹⁸,

AMBER: The Proton Radius

Apparatus for Meson and Baryon
Experimental Research

- The puzzle of Proton Radius
 - Two types of measurement
 - Lepton-proton scattering
 - Hydrogen spectroscopy
 - Results differ by $\sim 5 \sigma$

- Why μp scattering?
 - Leptonic probe
 - Different systematic uncertainties
 - Much provide smaller radiative than *ep*
 - Provide precise data for global fit

AMBER: The Proton Radius

- Challenging measurement
 - High-intensity 100 GeV μ beam: $2 \cdot 10^6$ s⁻¹
 - Simultaneous detection of scattered μ and recoil p
 - Re-use upgraded COMPASS spectrometer
 - Active-target TPC: up to 20 bar H₂
 - Free-streaming DAQ: minimize trigger bias, latency of TPC
 - Goal: 70Mev. in $10^{-3} < Q^2 < 0.04 \text{ GeV}^2$
 - Expected precision $\lesssim 0.01$ fm

AMBER: Indirect DM searches

- Needed as input to the Dark Matter searches:
 - For example to interpret AMS data.

p production x-section uncertainties from p-p and p-He collisions is a limiting factor to know the \overline{p}/p flux ratio expected

9

LZ

DARKSIDE XENON T

AMBER: Antiproton Production

- Secondary p beam with 50, 100, 150, 200, 280 GeV
- Minimum bias trigger \Rightarrow beam intensity of $5 \cdot 10^5 \text{ s}^{-1}$
- Liquid H₂ and He target
- Proton ID in CEDARs, antiproton ID in RICH
- Measure differential cross section in 10 bins in p momentum and pseudo-rapidity $2.4 < \eta < 5.6$
- Statistical uncertainty $\approx 0.5 1\%$ per data point
- Total systematic uncertainty $\approx 5\%$ (efficiencies, dead time)

Plots: impact of measurements on constraining the production of \bar{p} (fraction of total source term constrained by phase space of experiment)

The pion structure - Status

(a)

- Scarce / old data: E615, NA3, NA10,...
- Mostly heavy nuclear targets ⇒ large nuclear effects
- Discrepancy between experiments
- Valence PDF poorly constrained
- Sea and gluon PDFs basically unknown
- More and precise data urgently needed

[Chang et al., Chin. Phys. Lett. 38 (2021) 081101]

AMBER: access to pion structure through Drell-Yan

- Pion-induced Drell-Yan dimuon production
 - Isoscalar ¹²C target
 - Minimize nuclear effects
 - π^+ and π^- beams
 - Separate valence and sea
 - Goals:
 - 10× more data than currently available
 - 25k DY events
 - First precise and direct measurement of the sea quark distribution in the pion

Table 7: Statistics collected by earlier experiments (top rows), compared with the achievable statistics of the proposed experiment (bottom rows), in 213 days (π^+ beam) + 67 days (π^- beam).

Experiment	Experiment Target type		Beam energy (GeV) Beam type		DY mass (GeV/c ²)	DY events
E615 20 cm W		252	$\pi^+_{\pi^-}$	17.6×10^7 18.6×10^7	4.05 – 8.55	5000 30000
NA3	30 cm H ₂	200	$\pi^+\atop \pi^-$	2.0×10^7 3.0×10^7	4.1 – 8.5	40 121
	6 cm Pt	200	$\pi^+ \\ \pi^-$	2.0×10^7 3.0×10^7	4.2 – 8.5	1767 4961
	120 cm D ₂	286 140	π^-	65 × 10 ⁷	4.2 - 8.5 4.35 - 8.5	7800 3200
NA10	12 cm W	286 194 140	π^-	65×10^7	4.2 - 8.5 4.07 - 8.5 4.35 - 8.5	49600 155000 29300
COMPASS 2015 COMPASS 2018	110 cm NH ₃	190	π^-	7.0×10^{7}	4.3 – 8.5	35000 52000
	75 cm C	190	π^+	1.7×10^7	4.3 – 8.5 4.0 – 8.5	21700 31000
This exp		190	π^-	6.8×10^7	4.3 - 8.5 4.0 - 8.5	67000 91100
	12 cm W	190	π^{+}	0.4×10^7	4.3 - 8.5 4.0 - 8.5	8300 11700
		190	π^-	1.6×10^7	4.3 – 8.5 4.0 – 8.5	24100 32100

Definitions:

$$u_{val}^{\pi^{+}} = u^{\pi^{+}} - \bar{u}^{\pi^{+}}$$
 and $d_{val}^{\pi^{-}} = d^{\pi^{-}} - \bar{d}^{\pi^{-}}$

And assuming flavour-symmetry:

$$u_{val}^{\pi^+} = \bar{d}_{val}^{\pi^+} = \bar{u}_{val}^{\pi^-} = d_{val}^{\pi^-}$$

$$\bar{u}_{sea}^{\pi} = u_{sea}^{\pi} = \bar{d}_{sea}^{\pi} = d_{sea}^{\pi} = \bar{s}_{sea}^{\pi} = s_{sea}^{\pi}$$

$$\frac{\Sigma_{sea}}{\Sigma_{valence}} = \frac{4\sigma^{\pi^+C} - \sigma^{\pi^-C}}{-\sigma^{\pi^+C} + \sigma^{\pi^-C}}$$
LO: only sea-val and val-sea terms
LO: only val-val terms

AMBER: Drell-Yan setup

Apparatus for Meson and Baryon
Experimental Research

3 carbon targets of 25cm length

2 tungsten targets of 6cm length

(alternative 2cm length W upstream)

- 190 GeV π beam
- Dedicated target
- Vertex detecto
- Hadron absorber
- Dimuon mass resolution ~ 100 MeV

2024 Drell-Yan setup

AMBER: Access gluon content in the pion

- What can we learn from J/ψ production at AMBER?
 - Large statistics on J/ψ production at dimuon channel
 - Inclusive: due to the hadron absorber, we cannot distinguish prompt production from the rest
 - Expected significant feed-down: $\psi(2S)$, χ_{c1} , χ_{c2}
 - In the low-pT regime
 - Expected to have dominant contribution from $2\rightarrow 1$ processes
 - Use J/ ψ polarization to distinguish production mechanism:

AMBER: PHASE-II

- RF- Separated beams
 - Particle species: same momenta but different velocities, $\Delta p/p \sim 1\%$
 - Time-dependent transverse kick by RF cavities in dipole mode
 - Longitudinal separation of particle species by $L_{\mbox{\scriptsize RF}}$
 - RF1 kick compensated or amplified by RF2, depending on phase difference:
 - $\Delta \varphi = 2\pi (L_{RF} f/c) (\beta_1^{-1} \beta_2^{-1})$
 - Dump of unwanted species
 - K^{\pm} beams with 60-100 GeV/c
 - \overline{p} beam with 80-110 GeV/c

Panofsky-Schnell-System with two cavities (CERN 68-29)

AMBER: Kaon structure: $u_{\scriptscriptstyle K}/u_{\scriptscriptstyle \pi}$

- Kaon structure: a window to the region of interference between the Higgs mechanism and the EHM mechanism
- The only available experimental data:
 - NA3 \rightarrow 200 GeV K^- beam on 6 cm Pt target
 - 700 kaon-induced Drell-Yan events

Kaon-induced Drell-Yan

Z-F. Cui, et al. EPJC80(2020)1064, H-W. Lin et al., PRD103(2021)014516

- First-ever kaon sea-valence separation:
 - Using kaon beams of both charges
 - Higher beam momentum: access to lower x_K

D —	σ^{K^+}	^{+}C		$U^K U$
$\kappa_{s/v}$ –	σ^{K^-C}	σ^{K^+C}	Δ.	u_{v}

	Experiment	Target type	Beam type	Beam intensity (part/sec)	Beam energy (GeV)	DY mass (GeV/c ²)	DY e ⁻ μ ⁺ μ ⁻	vents e^+e^-
	NA3	6cm Pt	K ⁻	????	200	4.2 – 8.5	700	0
Т	This exp.	100cm C	K-	2.1×10^7	80 100	4.0 – 8.5 4.0 – 8.5		13,700 17,700
	This exp.	Toochi C	K ⁺	2.1×10^7	80 100	4.0 – 8.5 4.0 – 8.5	2,800 5,200	1,300 2,000
	This exp.	100cm C	π^-	4.8×10^7	80 100	4.0 – 8.5 4.0 – 8.5	65,500 95,500	29,700 36,000

AMBER: Kaon-induced Drell-Yan

- Requirements
 - Momentum < 100 GeV/c
 - Lower beam momentum implies smaller angular acceptance
 - To keep the dilepton acceptance $\sim 40\% \rightarrow \text{Compress the spectrometer}$
 - "Active absorber":
 - Trackers
 - Magnetic field
 - Large area
 - Compact

AMBER: J/ ψ production: an access to the gluon content in the kaon

- J/ ψ data collected in parallel with kaon-induced Drell-Yan
- Large statistics
- Model-dependent access to the gluon distribution in kaons
- J/ ψ production cross section (LO):

$$K^{-}(\overline{u}s) + p(uud) \propto gg + \left[\overline{u}_{v}^{K}u_{v}^{p}\right] + \left[\overline{u}_{v}^{K}u_{s}^{p} + s_{v}^{K}s_{s}^{p}\right] + \left[\overline{u}_{s}^{K}u_{v}^{p}\right] + \left[\overline{u}_{s}^{K}u_{s}^{p} + u_{s}^{K}\overline{u}_{s}^{p} + s_{s}^{K}\overline{s}_{s}^{p} + \overline{s}_{s}^{K}s_{s}^{p}\right]$$

$$K^{+}(u\overline{s}) + p(uud) \propto gg + \left[---\right] + \left[\underline{u}_{v}^{K}\overline{u}_{s}^{p} + \overline{s}_{v}^{K}s_{s}^{p}\right] + \left[\overline{u}_{s}^{K}u_{v}^{p}\right] + \left[\overline{u}_{s}^{K}u_{s}^{p} + u_{s}^{K}\overline{u}_{s}^{p} + s_{s}^{K}\overline{s}_{s}^{p} + \overline{s}_{s}^{K}s_{s}^{p}\right]$$

$$val - val \qquad val - sea \qquad sea - val \qquad sea - sea$$

Using Color Evaporation Model Int.J.Mod.Phys. A 10 (1995) 3043 JAM18 "pion" PDFs (PRL 121, 152001 (2018))

Apparatus for Meson and Baryon Experimental Research

AMBER: Prompt-photons

- Clean access to the gluon distribution in kaon
- 100 GeV *K*⁺ beam on a long LH₂ target

Direct access to the gluon PDF at $x_g^k > 0.05$, $Q^2 \sim p_T$

Background

K⁺ beam: minimize bkg

Minimum bias photons background

 $p_T^{\gamma} > 2.5 \text{ GeV/c}$:

minimize photon background

A000BER

AMBER: Kaon-induced prompt-photon production

Apparatus for Meson and Baryon Experimental Research

$$x_T = 2p_T / \sqrt{s}$$

In 140 days

Experiment	Target type	Beam type	Beam Intensity (part/sec)	Beam Energy (GeV)	$\int \mathcal{L}$ (pb ⁻¹)	p_T range (GeV/c)	prompt-photon events
WA70	1m lH_2	π^+ π^-	2.5×10^6 1.25×10^7	280 280	1.3 3.5	$4 < p_T < 7 \\ 4 < p_T < 7$	_
This exp	2m lH_2	K^+ π^+	2×10^7 2×10^7	100 100	50 50	$p_T > 2.5$ $p_T > 2.5$	3.4×10^6 3.4×10^6

AMBER: Summary

- The AMBER experiment at the CERN M2 beamline is a new "QCD Facility" to investigate the Emergence of Hadron Mass
- AMBER phase-I was approved in December 2020, for measurements on
 - Proton radius from muon-proton elastic scattering
 - Pion structure from pion-induced Drell-Yan and Charmonium production
 - Antiproton cross-sections input for Dark Matter searches
- The planned upgrade of the M2 beamline will provide radio-frequency separated hadron beams.
- High purity kaon beams are being proposed for a phase-II of AMBER:
 - Kaon structure from kaon-induced Drell-Yan and Charmonium production
 - Gluon content in the kaon from direct-photon production
 - Light meson spectroscopy using kaon beams
 - Kaon charge radius from elastic kaon-electron scattering

https://amber.web.cern.ch/

