Hadron structure at AMBER Carlos Azevedo on behalf of AMBER collaboration (cdazevedo@ua.pt) 4th May 2022 DIS2022 – Santiago de Compostela, Spain ## AMBER and the emergence of hadron mass - The question: - How to understand that $M_{\pi}/M_{p} \sim 1/7$ while from constituent-quarks model one would expect ~2/3? • Only 1% of the proton mass is due to the Higgs mechanism. Pion - \bullet M $_{\pi}\sim 140 { m MeV}$ - Spin 0 - 2 light valence quarks Kaon - $M_K \sim 490 MeV$ - Spin 0 - 1 light and 1 "heavy" valence quarks Proton - $M_p \sim 940 \text{MeV}$ - Spin 1/2 - 3 light valence quarks ## Apparatus for Meson and Baryon Experimental Research ## AMBER and the emergence of hadron mass • Dynamic Chiral Symmetry Breaking of QCD leads to the quarks and gluons rapidly acquiring a running mass in the infrared limit ## **AMBER: The oportunity** - In the North Area at CERN, SPS beam of high-intensity and high-energy is hitting several primary targets. The secondary beams obtained supply different beamlines - At the M2 beamline, unique-in-the-world beams are available: - Muon beams of both charges - Hadron beams of both charges - Wide range of momenta: 50 280 GeV/c - Intensity limited by radioprotection #### **AMBER: NA66** #### • AMBER: - Apparatus for Meson and Baryon Experimental Research - Approved as NA66 by the CERN Research Board in December 2020 - Divided in 2 phases - Phase-1 (Approoved) - Proton Radius - Pion PDFs through Drell-Yan and Charmonium production - Antiproton production cross sections for Dark-Matter search - Phase-II (requiring RF-separeted beams to M2) - Proposal submition planned to 2022 - Kaon and meson gluon PDFs - Strange spectroscopy - Meson charge radii #### https://arxiv.org/pdf/1808.00848.pdf EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Letter of Intent: A New QCD facility at the M2 beam line of the CERN SPS' COMPASS++[†]/AMBER[†] B. Adams^{13,12}, C.A. Aidala¹, R. Akhunzyanov¹⁴, G.D. Alexeev¹⁴, M.G. Alexeev⁴¹, A. Amoroso^{41,42} V. Andrieux 4, N.V. Anfimov 4, V. Anosov 4, A. Antoshkin 4, K. Augsten 14,32, W. Augustyniak 6 C.D.R. Azevedo⁴, A. Azhibekov², B. Badelek⁴⁷, F. Balestra^{41,42}, M. Ball⁸, J. Barth⁹, R. Beck⁸, Y. Bedfer²⁰, J. Berenguer Antequera^{41,42}, J.C. Bernauer^{34,45}, J. Bernhard¹⁹, M. Bodlak³¹, P. Bordalo²³ F. Bradamante³⁹, A. Bressan^{38,39}, M. Büchele¹⁶, V.E. Burtsev⁴⁰, W.-C. Chang³⁵, C. Chatterjee¹ X. Chen²¹, M. Chiosso^{41,42}, A.G. Chumakov⁴⁰, S.-U. Chung^{17,b}, A. Cicuttin^{39,e}, P. Correia⁴, M.L. Crespo^{39,c}, S. Dalla Torre³⁹, S.S. Dasgupta¹¹, S. Dasgupta^{38,39}, N. Dashyan⁵⁰, I. Denisenko¹⁴ O.Yu. Denisov⁴², L. Dhara¹¹, N. d'Hose²⁰, F. Donato⁴³, S.V. Donskov³³, N. Doshita⁴ Ch. Dreisbach¹⁷, W. Dünnweber^d, R.R. Dusaev⁴⁰, M. Dziewiecki⁴⁸, A. Dzyuba¹⁸, A. Efremov¹ P. Egelhof¹⁵, A. Elagin¹³, P.D. Eversheim⁸, M. Faessler^d, J. Fedotova²⁶, A. Ferrero²⁰, M. Finger³ M. Finger jr.³¹, H. Fischer¹⁶, C. Franco²³, J.M. Friedrich¹⁷, V. Frolov¹⁴, A. Futch⁴⁴, F. Gautheron⁴⁴ O.P. Gavrichtchouk¹⁴, S. Gerassimov^{28,17}, S. Gevorkyan¹⁴, Y. Ghandilyan⁵⁰, J. Giarra²⁵, I. Gnesi^{41,4} M. Gorzellik 16, A. Grasso 41.42, A. Gridin 14, M. Grosse Perdekamp 44, B. Grube 17, R.I. Gushterski 14 A. Guskov¹⁴, D. Hahne⁹, G. Hamar³⁹, D. von Harrach²⁵, X. He³, R. Heitz⁴⁴, F. Herrmann¹⁶ N. Horikawa^{30,e}, C.-Y. Hsieh^{35,f}, S. Huber¹⁷, A. Inglessi¹⁸, A. Ilyichev²⁶, T. Isataev², S. Ishimoto⁴⁹ A. Ivanov¹⁴, N. Ivanov⁵⁰, Yu. Ivanshin¹⁴, T. Iwata⁴⁹, M. Jandek³¹, V. Jary³², C.-M. Jen²⁴, R. Joosten⁸ P. Jörg¹⁶, K. Juraskova³², E. Kabuß²⁵, A. Kabyshev², F. Kaspar¹⁷, A. Kerbizi^{38,39}, B. Ketzer⁸ G.V. Khaustov³³, Yu.A. Khokhlov^{33,h}, M. Kim¹, O. Kiselev¹⁵, Yu. Kisselev¹⁴, F. Klein⁹ | Program | Physics
Goals | Beam
Energy
[GeV] | Beam
Intensity
[s ⁻¹] | Trigger
Rate
[kHz] | Beam
Type | Target | Earliest
start time,
duration | Hardware additions | |--------------------------------------|--|-------------------------|---|--------------------------|-------------------------|---------------------------------------|-------------------------------------|--| | muon-proton
elastic
scattering | Precision
proton-radius
measurement | 100 | $4 \cdot 10^6$ | 100 | μ^{\pm} | high-
pressure
H2 | 2022
1 year | active TPC,
SciFi trigger,
silicon veto, | | Hard
exclusive
reactions | GPD E | 160 | 2 · 10 ⁷ | 10 | μ^{\pm} | NH [↑] ₃ | 2022
2 years | recoil silicon,
modified polarised
target magnet | | Input for Dark
Matter Search | p production
cross section | 20-280 | 5 · 10 ⁵ | 25 | p | LH2,
LHe | 2022
1 month | liquid helium
target | | p-induced spectroscopy | Heavy quark
exotics | 12, 20 | 5 · 10 ⁷ | 25 | P | LH2 | 2022
2 years | target spectrometer:
tracking,
calorimetry | | Drell-Yan | Pion PDFs | 190 | 7 · 10 ⁷ | 25 | π^{\pm} | C/W | 2022
1-2 years | | | Drell-Yan
(RF) | Kaon PDFs &
Nucleon TMDs | ~100 | 108 | 25-50 | K^{\pm}, \overline{p} | NH ₃ [↑] ,
C/W | 2026
2-3 years | "active absorber",
vertex detector | | Primakoff
(RF) | Kaon polarisa-
bility & pion
life time | ~100 | 5 · 10 ⁶ | > 10 | <i>K</i> ⁻ | Ni | non-exclusive
2026
1 year | | | Prompt
Photons
(RF) | Meson gluon
PDFs | ≥ 100 | 5 · 10 ⁶ | 10-100 | K^{\pm} π^{\pm} | LH2,
Ni | non-exclusive
2026
1-2 years | hodoscope | | K-induced
Spectroscopy
(RF) | High-precision
strange-meson
spectrum | 50-100 | 5 · 10 ⁶ | 25 | <i>K</i> ⁻ | LH2 | 2026
1 year | recoil TOF,
forward PID | | Vector mesons
(RF) | Spin Density
Matrix
Elements | 50-100 | 5 · 10 ⁶ | 10-100 | K^{\pm}, π^{\pm} | from H
to Pb | 2026
1 year | | Table 2: Requirements for future programmes at the M2 beam line after 2021. Muon beams are in blue, conventional hadron beams in green, and RF-separated hadron beams in red. #### http://cds.cern.ch/record/2676885/files/SPSC-P-360.pdf?version=3 #### EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Phase-I ERN-SPSC-2019–022 SPSC-P-360 October 13, 2019 #### Proposal for Measurements at the M2 beam line of the CERN SPS - Phase-1 - COMPASS++*/AMBER Phase-II B. Adams^{14,13}, C.A. Aidala¹, G.D. Alexeev¹⁵, M.G. Alexeev^{22,43}, A. Amoroso^{22,43}, V. Andrieux^{45,20}, N.V. Anfimov¹⁵, V. Anosov¹⁵, A. Antoshkin¹⁵, K. Augsten^{15,32}, W. Augustyniak⁴⁷, C.D.R. Azevedo⁴, B. Badelek⁴⁸, F. Balestra^{2,43}, M. Ball⁸, D. Banerjee^{65,20}, J. Barth⁸, R. Beck³, J. Berenguer Antequera^{2,24}, J.C. Bernauer^{35,46}, J. Bernhard^{20,6}, M. Bodlad³¹, F. Bradamante⁴⁰, A. Bressan^{39,40}, M. Büchel⁷, V.E. Burtsev¹¹, C. Butler⁷, C. Chatterjee^{9,40}, M. Chiosso^{2,45}, A.G. Chumakov⁴¹, S.-U. Chung^{18,5}, A. Cicuttin^{40,6}, M. Connora³, A. Contin⁶, P. Correia⁴, M.L. Crespo^{40,6}, S. Dalla Torre⁴⁰, S.S. Dasgupta¹¹, S. Dasgupta^{40,11}, N. Dashyam³¹, I. Denisenko¹⁵, O. Yu. Denisov⁴³, L. Dhara¹¹, F. Donato⁴⁴, S.V. Donskov³³, N. Doshita⁵⁰, Ch. Dreisbach¹⁸, W. Dünnweber⁴, R.R. Dusaev⁴¹, A. Dzyuba¹⁹, A. Efremov¹⁵, P. Egelhof¹⁶, F. Ehrler²¹, A. Elagin¹⁴, P.D. Evershein⁸, P. Faccioli²³, M. Friedrich¹⁸, M. Finger¹⁷, M. Finger¹⁷, M. Finger¹⁷, M. Finscher¹⁷, C. Franco³, J.M. Friedrich¹⁸, ### **AMBER: The Proton Radius** Apparatus for Meson and Baryon Experimental Research - The puzzle of Proton Radius - Two types of measurement - Lepton-proton scattering - Hydrogen spectroscopy - Results differ by $\sim 5 \sigma$ - Why μp scattering? - Leptonic probe - Different systematic uncertainties - Much provide smaller radiative than *ep* - Provide precise data for global fit #### **AMBER: The Proton Radius** - Challenging measurement - High-intensity 100 GeV μ beam: $2 \cdot 10^6$ s⁻¹ - Simultaneous detection of scattered μ and recoil p - Re-use upgraded COMPASS spectrometer - Active-target TPC: up to 20 bar H₂ - Free-streaming DAQ: minimize trigger bias, latency of TPC - Goal: 70Mev. in $10^{-3} < Q^2 < 0.04 \text{ GeV}^2$ - Expected precision $\lesssim 0.01$ fm ### **AMBER: Indirect DM searches** - Needed as input to the Dark Matter searches: - For example to interpret AMS data. p production x-section uncertainties from p-p and p-He collisions is a limiting factor to know the \overline{p}/p flux ratio expected 9 LZ DARKSIDE XENON T ## **AMBER: Antiproton Production** - Secondary p beam with 50, 100, 150, 200, 280 GeV - Minimum bias trigger \Rightarrow beam intensity of $5 \cdot 10^5 \text{ s}^{-1}$ - Liquid H₂ and He target - Proton ID in CEDARs, antiproton ID in RICH - Measure differential cross section in 10 bins in p momentum and pseudo-rapidity $2.4 < \eta < 5.6$ - Statistical uncertainty $\approx 0.5 1\%$ per data point - Total systematic uncertainty $\approx 5\%$ (efficiencies, dead time) Plots: impact of measurements on constraining the production of \bar{p} (fraction of total source term constrained by phase space of experiment) ## The pion structure - Status (a) - Scarce / old data: E615, NA3, NA10,... - Mostly heavy nuclear targets ⇒ large nuclear effects - Discrepancy between experiments - Valence PDF poorly constrained - Sea and gluon PDFs basically unknown - More and precise data urgently needed [Chang et al., Chin. Phys. Lett. 38 (2021) 081101] ## AMBER: access to pion structure through Drell-Yan - Pion-induced Drell-Yan dimuon production - Isoscalar ¹²C target - Minimize nuclear effects - π^+ and π^- beams - Separate valence and sea - Goals: - 10× more data than currently available - 25k DY events - First precise and direct measurement of the sea quark distribution in the pion **Table 7:** Statistics collected by earlier experiments (top rows), compared with the achievable statistics of the proposed experiment (bottom rows), in 213 days (π^+ beam) + 67 days (π^- beam). | Experiment | Experiment Target type | | Beam energy (GeV) Beam type | | DY mass (GeV/c ²) | DY events | |------------------------------|------------------------|-------------------|-----------------------------|--|---------------------------------------|--------------------------| | E615 20 cm W | | 252 | $\pi^+_{\pi^-}$ | 17.6×10^7
18.6×10^7 | 4.05 – 8.55 | 5000
30000 | | NA3 | 30 cm H ₂ | 200 | $\pi^+\atop \pi^-$ | 2.0×10^7 3.0×10^7 | 4.1 – 8.5 | 40
121 | | | 6 cm Pt | 200 | $\pi^+ \\ \pi^-$ | 2.0×10^7 3.0×10^7 | 4.2 – 8.5 | 1767
4961 | | | 120 cm D ₂ | 286
140 | π^- | 65 × 10 ⁷ | 4.2 - 8.5
4.35 - 8.5 | 7800
3200 | | NA10 | 12 cm W | 286
194
140 | π^- | 65×10^7 | 4.2 - 8.5
4.07 - 8.5
4.35 - 8.5 | 49600
155000
29300 | | COMPASS 2015
COMPASS 2018 | 110 cm NH ₃ | 190 | π^- | 7.0×10^{7} | 4.3 – 8.5 | 35000
52000 | | | 75 cm C | 190 | π^+ | 1.7×10^7 | 4.3 – 8.5
4.0 – 8.5 | 21700
31000 | | This exp | | 190 | π^- | 6.8×10^7 | 4.3 - 8.5
4.0 - 8.5 | 67000
91100 | | | 12 cm W | 190 | π^{+} | 0.4×10^7 | 4.3 - 8.5
4.0 - 8.5 | 8300
11700 | | | | 190 | π^- | 1.6×10^7 | 4.3 – 8.5
4.0 – 8.5 | 24100
32100 | #### Definitions: $$u_{val}^{\pi^{+}} = u^{\pi^{+}} - \bar{u}^{\pi^{+}}$$ and $d_{val}^{\pi^{-}} = d^{\pi^{-}} - \bar{d}^{\pi^{-}}$ #### And assuming flavour-symmetry: $$u_{val}^{\pi^+} = \bar{d}_{val}^{\pi^+} = \bar{u}_{val}^{\pi^-} = d_{val}^{\pi^-}$$ $$\bar{u}_{sea}^{\pi} = u_{sea}^{\pi} = \bar{d}_{sea}^{\pi} = d_{sea}^{\pi} = \bar{s}_{sea}^{\pi} = s_{sea}^{\pi}$$ $$\frac{\Sigma_{sea}}{\Sigma_{valence}} = \frac{4\sigma^{\pi^+C} - \sigma^{\pi^-C}}{-\sigma^{\pi^+C} + \sigma^{\pi^-C}}$$ LO: only sea-val and val-sea terms LO: only val-val terms ## **AMBER: Drell-Yan setup** Apparatus for Meson and Baryon Experimental Research 3 carbon targets of 25cm length 2 tungsten targets of 6cm length (alternative 2cm length W upstream) - 190 GeV π beam - Dedicated target - Vertex detecto - Hadron absorber - Dimuon mass resolution ~ 100 MeV 2024 Drell-Yan setup ## AMBER: Access gluon content in the pion - What can we learn from J/ψ production at AMBER? - Large statistics on J/ψ production at dimuon channel - Inclusive: due to the hadron absorber, we cannot distinguish prompt production from the rest - Expected significant feed-down: $\psi(2S)$, χ_{c1} , χ_{c2} - In the low-pT regime - Expected to have dominant contribution from $2\rightarrow 1$ processes - Use J/ ψ polarization to distinguish production mechanism: #### **AMBER: PHASE-II** - RF- Separated beams - Particle species: same momenta but different velocities, $\Delta p/p \sim 1\%$ - Time-dependent transverse kick by RF cavities in dipole mode - Longitudinal separation of particle species by $L_{\mbox{\scriptsize RF}}$ - RF1 kick compensated or amplified by RF2, depending on phase difference: - $\Delta \varphi = 2\pi (L_{RF} f/c) (\beta_1^{-1} \beta_2^{-1})$ - Dump of unwanted species - K^{\pm} beams with 60-100 GeV/c - \overline{p} beam with 80-110 GeV/c #### Panofsky-Schnell-System with two cavities (CERN 68-29) ## AMBER: Kaon structure: $u_{\scriptscriptstyle K}/u_{\scriptscriptstyle \pi}$ - Kaon structure: a window to the region of interference between the Higgs mechanism and the EHM mechanism - The only available experimental data: - NA3 \rightarrow 200 GeV K^- beam on 6 cm Pt target - 700 kaon-induced Drell-Yan events #### Kaon-induced Drell-Yan Z-F. Cui, et al. EPJC80(2020)1064, H-W. Lin et al., PRD103(2021)014516 - First-ever kaon sea-valence separation: - Using kaon beams of both charges - Higher beam momentum: access to lower x_K | D — | σ^{K^+} | ^{+}C | | $U^K U$ | |------------------|-----------------|-----------------|----|---------| | $\kappa_{s/v}$ – | σ^{K^-C} | σ^{K^+C} | Δ. | u_{v} | | | Experiment | Target
type | Beam
type | Beam intensity (part/sec) | Beam energy
(GeV) | DY mass
(GeV/c ²) | DY e ⁻
μ ⁺ μ ⁻ | vents e^+e^- | |---|------------|----------------|----------------|---------------------------|----------------------|----------------------------------|--|------------------| | | NA3 | 6cm Pt | K ⁻ | ???? | 200 | 4.2 – 8.5 | 700 | 0 | | Т | This exp. | 100cm C | K- | 2.1×10^7 | 80
100 | 4.0 – 8.5
4.0 – 8.5 | | 13,700
17,700 | | | This exp. | Toochi C | K ⁺ | 2.1×10^7 | 80
100 | 4.0 – 8.5
4.0 – 8.5 | 2,800
5,200 | 1,300
2,000 | | | This exp. | 100cm C | π^- | 4.8×10^7 | 80
100 | 4.0 – 8.5
4.0 – 8.5 | 65,500
95,500 | 29,700
36,000 | ## **AMBER: Kaon-induced Drell-Yan** - Requirements - Momentum < 100 GeV/c - Lower beam momentum implies smaller angular acceptance - To keep the dilepton acceptance $\sim 40\% \rightarrow \text{Compress the spectrometer}$ - "Active absorber": - Trackers - Magnetic field - Large area - Compact ## AMBER: J/ ψ production: an access to the gluon content in the kaon - J/ ψ data collected in parallel with kaon-induced Drell-Yan - Large statistics - Model-dependent access to the gluon distribution in kaons - J/ ψ production cross section (LO): $$K^{-}(\overline{u}s) + p(uud) \propto gg + \left[\overline{u}_{v}^{K}u_{v}^{p}\right] + \left[\overline{u}_{v}^{K}u_{s}^{p} + s_{v}^{K}s_{s}^{p}\right] + \left[\overline{u}_{s}^{K}u_{v}^{p}\right] + \left[\overline{u}_{s}^{K}u_{s}^{p} + u_{s}^{K}\overline{u}_{s}^{p} + s_{s}^{K}\overline{s}_{s}^{p} + \overline{s}_{s}^{K}s_{s}^{p}\right]$$ $$K^{+}(u\overline{s}) + p(uud) \propto gg + \left[---\right] + \left[\underline{u}_{v}^{K}\overline{u}_{s}^{p} + \overline{s}_{v}^{K}s_{s}^{p}\right] + \left[\overline{u}_{s}^{K}u_{v}^{p}\right] + \left[\overline{u}_{s}^{K}u_{s}^{p} + u_{s}^{K}\overline{u}_{s}^{p} + s_{s}^{K}\overline{s}_{s}^{p} + \overline{s}_{s}^{K}s_{s}^{p}\right]$$ $$val - val \qquad val - sea \qquad sea - val \qquad sea - sea$$ Using Color Evaporation Model Int.J.Mod.Phys. A 10 (1995) 3043 JAM18 "pion" PDFs (PRL 121, 152001 (2018)) # Apparatus for Meson and Baryon Experimental Research ## **AMBER: Prompt-photons** - Clean access to the gluon distribution in kaon - 100 GeV *K*⁺ beam on a long LH₂ target Direct access to the gluon PDF at $x_g^k > 0.05$, $Q^2 \sim p_T$ Background *K*⁺ beam: minimize bkg Minimum bias photons background $p_T^{\gamma} > 2.5 \text{ GeV/c}$: minimize photon background ## A000BER ## **AMBER: Kaon-induced prompt-photon production** Apparatus for Meson and Baryon Experimental Research $$x_T = 2p_T / \sqrt{s}$$ In 140 days | Experiment | Target
type | Beam
type | Beam Intensity
(part/sec) | Beam Energy
(GeV) | $\int \mathcal{L}$ (pb ⁻¹) | p_T range (GeV/c) | prompt-photon
events | |------------|-------------------|-----------------|---|----------------------|--|------------------------------|--| | WA70 | 1m lH_2 | π^+ π^- | 2.5×10^6
1.25×10^7 | 280
280 | 1.3
3.5 | $4 < p_T < 7 \\ 4 < p_T < 7$ | _ | | This exp | 2m lH_2 | K^+ π^+ | 2×10^7 2×10^7 | 100
100 | 50
50 | $p_T > 2.5$
$p_T > 2.5$ | 3.4×10^6
3.4×10^6 | ## **AMBER: Summary** - The AMBER experiment at the CERN M2 beamline is a new "QCD Facility" to investigate the Emergence of Hadron Mass - AMBER phase-I was approved in December 2020, for measurements on - Proton radius from muon-proton elastic scattering - Pion structure from pion-induced Drell-Yan and Charmonium production - Antiproton cross-sections input for Dark Matter searches - The planned upgrade of the M2 beamline will provide radio-frequency separated hadron beams. - High purity kaon beams are being proposed for a phase-II of AMBER: - Kaon structure from kaon-induced Drell-Yan and Charmonium production - Gluon content in the kaon from direct-photon production - Light meson spectroscopy using kaon beams - Kaon charge radius from elastic kaon-electron scattering #### https://amber.web.cern.ch/