

Chiral symmetry breaking: Current experimental status and prospects with a breaking new COMPASS result

Jan Friedrich Institute for Hadronic Structures and Fundamental Symmetries

Physik-Department, TU München

th a breaking new COMPASS result on behalf of the Collaboration

Eighth International Symposium on Symmetries in Subatomic Physics Vienna, 29.8. – 2.10.2022

Quantum Chromodynamics

- Quantum Chromodynamics (QCD) as true theory of strong interaction
- Lagrangian of QCD

$$\mathcal{L}_{QCD} = \sum_{\substack{f = u, d, s, \\ c, b, t}} \overline{q}_f (i \not D - m_f) q_f - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a$$

- Symmetries:
 - Local color symmetry (strong interaction couples equally to red, green, and blue color charges) → conservation of color charge, coupling to gluons
 - 2. Flavor symmetries?

Quantum Chromodynamics

- Quantum Chromodynamics (QCD) as true theory of strong interaction
- Lagrangian of QCD:

$$\mathcal{L}_{QCD} = \sum_{\substack{f = u, d, s, \\ c, b, t}} \overline{q}_f (i \not D - m_f) q_f - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a$$
flavor-symmetry breaking term
$$(m_u \neq m_d \neq m_s)$$

- Symmetries:
 - Local color symmetry (strong interaction couples equally to red, green, and blue color charges) → conservation of color charge, coupling to gluons
 - 2. Flavor symmetries? \rightarrow only **approximate** symmetries

 $m_u = (2.16 \pm 0.49) \text{MeV}$ $m_d = (4.67 \pm 0.48) \text{MeV}$ $m_s = (93 \pm 11) \text{MeV}$ $m_c = (1.27 \pm 0.02) \text{GeV}$ $m_b = (4.18 \pm 0.03) \text{GeV}$ $m_t \approx 170 \text{GeV}$

Flavor symmetries of QCD

• Lagrangian of QCD:

$$\mathcal{L}_{QCD} = \sum_{\substack{f = u, d, s, \\ c, b, t}} \bar{q}_f (i \not D - m_f) q_f - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a$$
flavor-symmetry breaking term
$$m_u = (2.16 \pm 0.49) \text{MeV} \quad m_d = (4.67 \pm 0.48) \text{MeV} \quad m_s = (93 \pm 11) \text{MeV}$$

$$m_c = (1.27 \pm 0.02) \text{GeV} \quad m_b = (4.18 \pm 0.03) \text{GeV} \quad m_t \approx 170 \text{GeV}$$

• Approximate flavor symmetries:

Flavor symmetries of QCD

• Lagrangian of QCD:

$$\mathcal{L}_{QCD} = \sum_{\substack{f = u, d, s, \\ c, b, t}} \overline{q}_f (i \not D - m_f) q_f - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a$$
flavor-symmetry breaking term

• Approximate flavor symmetries:

Flavor symmetries of QCD

• Lagrangian of QCD:

$$\mathcal{L}_{QCD} = \sum_{\substack{f = u, d, s, \\ c, b, t}} \bar{q}_f (i D - m_f) q_f - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a$$
flavor-symmetry breaking term

• Approximate flavor symmetries:

Chiral symmetry of QCD

• Lagrangian of QCD:

$$\mathcal{L}_{QCD} = \sum_{\substack{f = u, d, s, \\ c, b, t}} \bar{q}_f (i \not D - m_f) q_f - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a$$
flavor-symmetry breaking term
$$m_u = (2.16 \pm 0.49) \text{MeV} \quad m_d = (4.67 \pm 0.48) \text{MeV} \quad m_s = (93 \pm 11) \text{MeV}$$

$$m_c = (1.27 \pm 0.02) \text{GeV} \quad m_h = (4.18 \pm 0.03) \text{GeV} \quad m_t \approx 170 \text{GeV}$$

• Flavor symmetries in chiral limit (
$$m_u = m_d = m_s = 0$$
):

 $SU(3)_R \times SU(3)_L$

- Left- and right-handed fields decouple for massless particles
- Chirality can directly be translated to parity of particle
 → mass-degenerate doublets of states with opposite parity

Chiral symmetry of QCD

• Lagrangian of QCD:

$$\mathcal{L}_{QCD} = \sum_{\substack{f = u, d, s, \\ c, b, t}} \bar{q}_f (i \not D - m_f) q_f - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a$$

• Flavor symmetries in chiral limit

 $SU(3)_R \times SU(3)_L$

- Left- and right-handed fields decouple for massless particles
- Chirality can directly be translated to parity of particle
 → mass-degenerate doublets of states with opposite parity
- Why is chiral symmetry not manifested in the spectrum (in contrast to isospin and the eightfold way)?
 - → Nambu-Goldstone mechanism for spontaneous/dynamic breakdown of chiral symmetry

Spontaneous symmetry breaking

 \Rightarrow Eight massless, spinless Goldstone bosons

 $\pi^{\pm},\pi^{0},K^{\pm},K^{0},\overline{K}^{0},\eta$

- \Rightarrow Explicit breaking of chiral symmetry due to the small quark masses \rightarrow Goldstone bosons acquire mass
- $\Rightarrow SU(3)_R \times SU(3)_L \rightarrow SU(3)_V$
- ⇒ Chiral Perturbation Theory: effective Lagrangian with power-counting scheme as low-energy theory for QCD makes use of chiral symmetry

The chiral anomaly

• Lagrangian of QCD

$$\mathcal{L}_{QCD} = \sum_{\substack{f = u, d, s, \\ c, b, t}} \overline{q}_f (i \not D - m_f) q_f - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a$$

- features axial U(1)-symmetry in chiral limit: $q(x) \rightarrow e^{i\theta\gamma_5}q(x)$
- No ninth "unnaturally light" meson
- Anomalous symmetry breaking: symmetry of the Lagrangian does not lead to conserved Noether currents
- Anomaly: Symmetry of classical Lagrangian violated at quantum level

Wess-Zumino-Witten term

- Chiral anomaly in ChPT taken into account by Wess-Zumino-Witten (WZW) term
- Describes the coupling of an odd number of Goldstone bosons:

SU(2) flavor	SU(3) flavor
$ \begin{array}{c} \pi^{0} \to \gamma \gamma \\ \gamma \pi^{-} \to \pi^{-} \pi^{0} \\ \pi^{+} \to e^{+} \gamma_{e} \gamma \end{array} $	$K^{+}K^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}$ $\eta \rightarrow \pi^{+}\pi^{-}\gamma$ $K^{+} \rightarrow \pi^{+}\pi^{-}e^{+}\gamma_{e}$
etc.	etc.

• Effective theory \rightarrow pion decay constant F_{π} measured from leptonic decays of the charged pion ($\pi^{\pm} \rightarrow \mu^{\pm} + \nu$)

Discovery of the chiral anomaly – π^0 lifetime

• First definitive measurement of π^0 -lifetime in 1963:

 $\tau_{\exp}(\pi^0) = (9.5 \pm 1.5) \cdot 10^{-17} s \neq \tau_{PCAC}(\pi^0) \approx 10^{-13} s$

• Adler, Bell, Jackiw, Bardeen 1969: calculation of triangle diagram

$$\Gamma^{\text{anom}}(\pi^{0} \to \gamma \gamma) = F_{\pi \gamma \gamma}^{2} \cdot \frac{m_{\pi^{0}}^{3}}{64\pi} = \left(\frac{e^{2}N_{c}}{12\pi^{2}F_{\pi}}\right)^{2} \frac{m_{\pi^{0}}^{3}}{64\pi} = 7.75 \text{ eV}$$
$$\tau(\pi^{0}) = \text{BR}(\pi^{0} \to \gamma \gamma) \cdot \frac{\hbar}{\Gamma^{\text{anom}}(\pi^{0} \to \gamma \gamma)}$$
$$= 8.38 \cdot 10^{-17} \text{ s}$$

• Moussalam and Kampf 2009: NLO-calculation in chiral perturbation theory

$$\tau_{\rm NLO}(\pi^0) = (8.04 \pm 0.11) \cdot 10^{-17} \,\mathrm{s}$$

More predictions from ChPT

- pion scattering lengths: 2-loop predictions
 - $a_0^0 m_\pi = 0.220 \pm 0.005$ confirmed by E865 in $K^+ \to \pi^+ \pi^- e^+ \nu_e$
 - $(a_0^0 a_0^2)m_{\pi} = 0.264 \pm 0.006$ confirmed by NA48 in 0.268 ± 0.010 K⁺ $\rightarrow \pi^+ \pi^0 \pi^0$
- pion polarisability: electric α_{π} , magnetic β_{π}
 - contribution to Compton scattering
 - ChPT prediction obtained by the relation to $\pi^+ \rightarrow e^+ \nu_e \gamma$ [Gasser, Ivanov, Sainio, Nucl. Phys. B745, 2006] [PIBETA, M. Bychkov et al., PRL 103, 051802, 2009]

 $\alpha_{\pi} + \beta_{\pi} = (0.2 \pm 0.1) \cdot 10^{-4} \text{fm}^3$ $\alpha_{\pi} - \beta_{\pi} = (5.7 \pm 1.0) \cdot 10^{-4} \text{fm}^3$

- Pion scattering including a real photon
 - Leading-order prediction from ChPT
 ↔ pion scattering lengths combined with photon coupling
 - chiral loop contribution theory prediction available, no measurement

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

COMPASS spectrometer

For the measurements presented in the following:

- 190 GeV negative hadron beam
- Beam PID
- Nuclear target(s): Ni and W
- Calorimetric trigger on neutrals
- Two stage spectrometer (LAS and SAS) with tracking and calorimeter

Pion-Photon reactions through the Primakoff technique

- Photon is provided by the strong Coulomb field of a nucleus (typical field strength at $d = 5R_{Ni}$: $E \approx 300 \text{ kV/fm}$)
- Coulomb field of nucleus is a source of quasi-real ($P_{\gamma}^2 \ll m_{\pi}^2$) photons
- Large impact parameters (ultra-peripheral scattering)

Measurement of the cross-section for $\pi^-\gamma \rightarrow \pi^-\pi^-\pi^+$

Higher chiral order for $\pi^-\gamma \rightarrow \pi^-\pi \pi$

Pion polarisability: COMPASS measurement

Compton cross-section contains information about e.m. polarisability (as deviation from the expectation for a pointlike particle)

Phys. Rev. Lett. 114, 062002 (2015)

1.15^{_pion beam}

1.10

1.05

 σ

Testing the chiral anomaly - $F_{3\pi}$

• Processes described by WZW term:

SU(2) flavor	SU(3) flavor
$\pi^0 \longrightarrow \gamma \gamma$	$K^+K^- \! \rightarrow \pi^+\pi^-\pi^0$
$\gamma\pi^- \! ightarrow \!\pi^- \pi^0$	$\eta ightarrow \pi^+ \pi^- \gamma$
$\pi^+ \rightarrow e^+ \nu_e \gamma$	$K^+ \rightarrow \pi^+ \pi^- e^+ \nu_e$
etc.	etc.

- $F_{3\pi}$: Direct coupling of γ to 3π process proceeds primarily via the chiral anomaly => one of the most definitive tests of low-energy QCD
- Accessible in Primakoff reactions via: $\pi^-\gamma^* \rightarrow \pi^-\pi^0$
- Problem of explicit chiral symmetry breaking:

$$F_{3\pi} = \frac{eN_C}{12\pi^2 F_{\pi}^3} = (9.78 \pm 0.05) \text{GeV}^{-3} = F(s = t = u = 0)$$

Testing the chiral anomaly - $F_{3\pi}$

• Processes described by WZW term:

SU(2) flavor	SU(3) flavor
$\pi^0 \to \gamma \gamma$	$K^+K^- \! \to \pi^+\pi^-\pi^0$
$\gamma\pi^- \! ightarrow \! \pi^- \pi^0$	$\eta ightarrow \pi^+ \pi^- \gamma$
$\pi^+ \rightarrow e^+ \nu_e \gamma$	$K^+ \rightarrow \pi^+ \pi^- e^+ \nu_e$
etc.	etc.

- $F_{3\pi}$: Direct coupling of γ to 3π process proceeds primarily via the chiral anomaly => one of the most definitive tests of low-energy QCD
- Accessible in Primakoff reactions via: $\pi^-\gamma^* \rightarrow \pi^-\pi^0$
- Problem of explicit chiral symmetry breaking:

$$F_{3\pi} = \frac{eN_C}{12\pi^2 F_{\pi}^3} = (9.78 \pm 0.05) \text{GeV}^{-3} = F(s = t = u = 0)$$

Previous measurement of $F_{3\pi}$:

Antipov, Y. et al. Phys.Rev. D36 (1987) 101103 from Serpukhov experiments

As previously noted, the value $F^{3\pi}$ is supposed to vary slowly with $s, t, q^2 \ll m_{\rho}^2$ so that $F^{3\pi} \simeq F^{3\pi}(0)$. $\frac{d\sigma_{\gamma\pi\to\pi\pi}}{dt} = \frac{(F^{3\pi})^2}{128\pi} \frac{1}{4} (s - 4m_{\pi}^2) \sin^2\theta$ 30 number of events 20 10 8 10 12 6 S/m^2_{π}

 $\Rightarrow F_{3\pi} = (12.9 \pm 0.9 \pm 0.5) \text{ GeV}^{-3}$

Testing the chiral anomaly - $F_{3\pi}$

• Processes described by WZW term:

SU(2) flavor	SU(3) flavor
$\pi^0 \to \gamma \gamma$	$K^+K^- \! \rightarrow \pi^+\pi^-\pi^0$
$\gamma \pi^- \rightarrow \pi^- \pi^0$	$\eta ightarrow \pi^+ \pi^- \gamma$
$\pi^+ \rightarrow e^+ \nu_e \gamma$	$K^+ \rightarrow \pi^+ \pi^- e^+ \nu_e$
etc.	etc.

- $F_{3\pi}$: Direct coupling of γ to 3π process proceeds primarily via the chiral anomaly => one of the most definitive tests of low-energy QCD
- Accessible in Primakoff reactions via: $\pi^-\gamma^* \rightarrow \pi^-\pi^0$
- Problem of explicit chiral symmetry breaking:

 $F_{3\pi} = \frac{eN_C}{12\pi^2 F_{\pi}^3} = (9.78 \pm 0.05) \text{GeV}^{-3} = F(s = t = u = 0)$

Reanalysis of Serpukhov data:

Ametller, L. et al. Phys.Rev. D64 (2001) 094009

- Using extrapolation & em corr:
 - $F_{3\pi} = (10.7 \pm 1.2) \text{ GeV}^{-3}$
- Compare to prediction from ChPT:
- $F_{3\pi} = (9.78 \pm 0.05) \text{ GeV}^{-3}$

Precision of previous measurements: O(10%)

⇒ More precise experimental determination desirable

Analysis of COMPASS measurement

New result! – PhD theses of D. Ecker (TUM) and A. Maltsev (JINR)

• Dispersive framework to deduce $F_{3\pi}$ from a fit to the $\pi^{-}\pi^{0}$ mass distribution up to 1.0 GeV including the $\rho(770)$ -resonance:

$$\sigma(s) = \frac{(s - 4m_{\pi}^2)^{3/2}(s - m_{\pi}^2)}{1024\pi\sqrt{s}} \int_{-1}^{1} \mathrm{d}z(1 - z^2) |\mathcal{F}(s, t, u)|^2$$

With

$$\mathcal{F}(s,t,u) = C_2^{(1)} \mathcal{F}_2^{(1)}(s,t,u) + C_2^{(2)} \mathcal{F}_2^{(2)}(s,t,u) - \frac{2e^2 F_{\pi}^2 F_{3\pi}}{t}$$

 $C_2^{(1)}$, $C_2^{(2)}$: fit parameters

 $\mathcal{F}_{2}^{(1)}(s, t, u), \mathcal{F}_{2}^{(2)}(s, t, u)$: provided by theory colleagues (Kubis, Hoferichter)

<u>M. Hoferichter, B. Kubis, and D. Sakkas, *PRD* **86** (2012) 116009</u>

Key part: luminosity determination

 Needed for absolute cross section measurement: effective integrated luminosity (DAQ dead time taken into account)

Effective luminosity: $L_{eff} = L \cdot (1 - \epsilon_{DAQ})$

- Luminosity can be determined via free decays of beam kaons in the beam:
 - Use CEDARs to tag kaons
 - Measure free decays where no material
 - Exclusive events with zero momentum transfer

Decay channel	Γ_i/Γ	Remark
$K^- o \mu^- \bar{\nu}_\mu$	(63.56 ± 0.11) %	Does not deposit energy in ECAL2 (Primakoff-trigger)
$K^- o \pi^- \pi^0$	(20.67 ± 0.08) %	Similar systematics as Primakoff $\pi^- \rightarrow \pi^- \pi^0$ channel
$K^- \rightarrow \pi^- \pi^- \pi^+$	(5.583 ± 0.024) %	Does not deposit energy in ECAL2 (Primakoff-trigger)
$K^- ightarrow e^- \pi^0 \overline{\nu}_e$	(5.07 ± 0.08) %	Non exclusive, missing energy
$K^- o \mu^- \pi^0 \overline{ u}_\mu$	(3.352 ± 0.033) %	Non exclusive, missing energy
$K^- o \pi^- \pi^0 \pi^0$	(1.760 ± 0.023) %	Used to determine $\pi/_{K}$ -ratio in the beam
others	$< 10^{-4}$	No significant contribution to background expected

 Different channels may form background for each other, but give possibility to crosscheck results

Used for luminosity determination Considered as background process

Luminosity from Kaon decays

 $L_{2\pi,eff} = 5.21 \pm 0.04_{stat} \text{ nb}^{-1}$ $L_{3\pi,eff} = 5.06 \pm 0.12_{stat} \text{ nb}^{-1}$

Largest contributions to systematic uncertainty:

- CEDAR tag efficiency: 7%
- ECAL reconstruction: 5%
- kaon/pion beam ratio: 2.5%

Result:

$$L_{eff} = 5.21 \pm 0.48_{syst} \pm 0.04_{stat}$$

The main background for $\pi^-\gamma \rightarrow \pi^-\pi^0$

• $\pi^{-}\pi^{0}$ -final state forbidden by *G*-parity conservation

- Large cross section for $\pi^{-}\pi^{0}\pi^{0}$ final state \Rightarrow loss of one (soft) π^{0}
- Approach: determine leakage from 3pi MC data with 2pi event selection

Approach for 3π leakage:

- Select diffractive 3π events
- Develop partial-wave model
- Weight 3π Monte Carlo data set according to model
- Subtract from 2π event sample

Result of fitting with the Kubis-Hoferichter model

• Selection: $Q^2 < 1.296 \cdot 10^{-3} \, \text{GeV}^2/c^2$

$$C_{2}^{(1)} = (10.5 \pm 0.1_{stat} \pm 0.6_{syst}) \text{GeV}^{-3}$$
$$C_{2}^{(2)} = (24.5 \pm 0.1_{stat}) \text{GeV}^{-5}$$

$$F_{3\pi} = (10.3 \pm 0.1_{stat} \pm 0.6_{syst}) \text{GeV}^{-3}$$

$$\Gamma_{\rho \to \pi \gamma} = \left(76 \pm 1_{stat-8 syst}^{+10}\right) \text{keV}$$

- Preliminary result for $F_{3\pi}$ in agreement with theory prediction from ChPT
- Lower systematics to be expected

Interpretation of the new preliminary result

• COMPASS: First combined measurement of $F_{3\pi}$ and $\Gamma_{\rho \to \pi \gamma}$

$$F_{3\pi} = (10.3 \pm 0.1_{stat} \pm 0.6_{syst}) \text{GeV}^{-3}$$
$$\Gamma_{\rho \to \pi\gamma} = \left(76 \pm 1_{stat} + 10_{-8} + 10_{syst}\right) \text{keV}$$

- Intensive test of systematics:
 - Different K^- decay channels
 - Studies on different background contributions (ω and π exchange)
- Accompanied with intensive analysis of $\pi^-\text{Ni} \rightarrow \pi^-\pi^0\pi^0\text{Ni}$ for background estimation

<u>Capraro, L. *et al.* NPB 288 (1987) 659-680</u> at CERN (SPS):

 $\Gamma_{\rho \to \pi \gamma} = (81 \pm 4 \pm 4) \text{ keV}$

Obtained by fitting $d\sigma/dt$ distribution (separation of nuclear and Coulomb processes)

- Neglecting chiral production of $\pi^-\pi^0$
- Presumably underestimation of systematics $(3\pi \text{ leakage, beam composition})$

Г(1	$\tau^{\pm}\gamma$)					I	Гз
VAL	UE (ke	V)	DOCUME	NT ID	TECN	CHG	COMMENT	
68	±7	OUR F	T Error includ	es scale fact	tor of 2.3			
68	±7	OUR A	VERAGE Error	includes sc	ale factor	of 2.2	. See the ideogram below.	
81	± 4	± 4	CAPRA	RO 87	SPEC	_	$200 \ \pi^- A \rightarrow \ \pi^- \pi^0 A$	
59.8	3±4.0	D	HUSTO	N 86	SPEC	+	$202 \pi^+ A \rightarrow \pi^+ \pi^0 A$	
71	± 7		JENSE	N 83	SPEC	_	156-260 $\pi^- A \rightarrow \pi^- \pi^0 A$	Ą

Interpretation of the new preliminary result

• COMPASS: First combined measurement of $F_{3\pi}$ and $\Gamma_{\rho \to \pi \gamma}$

$$F_{3\pi} = (10.3 \pm 0.1_{stat} \pm 0.6_{syst}) \text{GeV}^{-3}$$

$$\Gamma_{\rho \to \pi\gamma} = \left(76 \pm 1_{stat} + 10_{syst}^{+10}\right) \text{keV}$$

- Intensive test of systematics:
 - Different K^- decay channels
 - Studies on different background contributions (ω and π exchange)
- Accompanied with intensive analysis of $\pi^-\text{Ni} \rightarrow \pi^-\pi^0\pi^0\text{Ni}$ for background estimation

<u>Antipov, Y. et al. PRD 36 (1987) 101103</u> and reanalyzed by <u>Ametller, L. et al. PRD 64 (2001) 094009</u>

 $F_{3\pi} = (10.7 \pm 1.2) \, \text{GeV}^{-3}$

- Neglecting s-channel production of ρ meson
- No proper consideration of systematics

Conclusions and Outlook

- Chiral perturbation theory has, since its development in the 1980ies, made many correct predictions in low-energy pion-nucleon dynamics, and thus proven its validity as effective theory of QCD
- The limits of predictive power and precision of ChPT are still to be challenged by experiment
- COMPASS has played a key role in the pion sector, and there are still data to harvest

2004	$\pi^+\pi^-\pi^-$: published result	→ PRL 108 (2012) 192001
2009	$\pi^-\gamma$: pion polarizabilities $\pi^-\pi^0$: chiral anomaly $\pi^-\pi^0\pi^0$: chiral dynamics	→ PRL 114 (2015) 06002 new result!
2012	$\pi^-\gamma$: pion polarizabilities $\pi^-\pi^0$: chiral anomaly $\pi^-\pi^0\pi^0$: chiral dynamics	Ax larger data set compared to 2009

• On the future program of the successor AMBER experiment: a similar program on the kaon sector

Thank you for your attention

Radiative width of ρ -meson

- Coherent background of $\rho(770)$ -production (strong and electro-magnetic)

 π^{-} ρ^{-} π^{0} Ni

⇒ possibility of extraction of radiative width of ρ meson: $\Gamma_{(\rho \to \pi \gamma)}/\Gamma_{tot} \approx 4.5 \cdot 10^{-4}$

Radiative width of ρ -meson

- Coherent background of $\rho(770)$ -production (strong and electro-magnetic)

⇒ possibility of extraction of radiative width of ρ meson: $\Gamma_{(\rho \to \pi \gamma)} / \Gamma_{tot} \approx 4.5 \cdot 10^{-4}$ Radiative width of ρ -meson:

<u>Capraro, L. *et al.* Nucl.Phys. B288 (1987) 659-680</u> at CERN (SPS):

• From fit of $d\sigma/dt$ for ρ production: $\Gamma(\rho \rightarrow \pi \gamma) = (81 \pm 4 \pm 4) \text{ keV}$

Radiative width of ρ -meson

- Coherent background of $\rho(770)$ -production (strong and electro-magnetic)

 π^{-} ρ^{-} π^{0} Ni

- ⇒ possibility of extraction of radiative width of ρmeson: $\Gamma_{(\rho \to \pi \gamma)} / \Gamma_{tot} \approx 4.5 \cdot 10^{-4}$
- At kinematic threshold: non-resonant behaviour but chiral anomaly (Serpukhov measurement)
- Interference between Chiral Anomaly and ρ gives additional information

Approach for 3π -leakage

Jan Friedrich | SSP2022 Vienna | 30.8.2022

Approach for 3π -leakage

Jan Friedrich | SSP2022 Vienna | 30.8.2022