Spin Density Matrix Elements in Exclusive Vector Meson Muoproduction at COMPASS

Andrzej Sandacz

National Centre for Nuclear Research, Warsaw on behalf of the COMPASS Collaboration

ICNFP 2021

10th International Conference on New Frontiers in Physics Kolymbari, Greece, August 23 - September 2, 2021

Contents

- Introduction
- SDMEs for exclusive vector meson production
- Generalised Parton Distributions
- COMPASS experiment and the data
- Results on SDMEs and related observables
- Summary and outlook

Introduction

Hard exclusive meson leptoproduction (HEMP)	
$l N \rightarrow l' N' M$ in one-	photon-approx. $\gamma^* N \rightarrow N' M$
'Hard' = high virtuality Q^2 of γ^* ,	or large mass of M (Quarkonia)
HEMP convenient tool for studying $\begin{cases} \\ \\ \\ \\ \\ \end{cases}$	mechanism of reactionstructure of the nucleon
Two approaches to describe HEMP	 color-dipol model (for VMs) color-dipol interaction with nucleon described either by Regge phenomenology or by pQCD GPD models (for VMs and PMs)

Numerous results (13 publications) for ρ^0 production on *p*, *d* and ³*He* CORNELL, CLAS (x2), HERMES (x3), NMC, E665, H1 (x2), ZEUS (x3)

Measured $\sigma_{T} + \varepsilon \sigma_{L}$, σ_{T} , σ_{L} as functions of Q^{2} , W and t In most cases the separation σ_{T} vs. σ_{L} by using 1D-angular distribution(s) + assumption of s-channe helcity conservation for more cf. review by L. Favart, M. Guidal, T. Horn, P. Kroll in arXiv:1511.04535v2 (2018)

Only in 3 publications (HERMES, H1, ZEUS) + recently from COMPASS results on SDMEs obtained from the analysis of 3D-angular distributions

Vector meson spin-density matrix

> $\rho_{\lambda_V \lambda'_V}$ decomposes into nine matrices $\rho^{\alpha}_{\lambda_V \lambda'_V}$ corresponding to different photon polarisation states $\alpha = 0 - 3$ - transv., 4 - long., 5 - 8 - interf.

when contributions from transverse and longitudinal photons cannot be separeted

following SDMEs are introduced (K.Schilling and K. Wolf, NP B 61 (1973) 381)

Access to helicity amplitudes allows:

> test of s-channel helicity conservation ($\lambda_{\gamma} = \lambda_{V}$)

quantify the role of transitions with helicity flip

decomposition into Natural (N) Parity and Unnatural (U) Parity exchange amplitudes

$$F_{\lambda_{V}\lambda_{N}^{\prime}\lambda_{\gamma}\lambda_{N}} = T_{\lambda_{V}\lambda_{N}^{\prime}\lambda_{\gamma}\lambda_{N}} + U_{\lambda_{V}\lambda_{N}^{\prime}\lambda_{\gamma}\lambda_{N}}$$

• in Regge framework NPE: $J^P = (0^+, 1^-, ...)$ (pomeron, $\rho, \omega, a_2 ...$ reggeons) UPE: $J^P = (0^-, 1^+, ...)$ (π, a_1, b_1 ... reggeons)

tests of GPD models

• e.g. for SCHC-violating transitions $\gamma_T \rightarrow V_L$ test sensitivity to GPDs with exchanged-quark helicity flip (transversity GPDs)

determination of the longitudinal-to-transverse cross-section ratio

Generalised Parton Distributions (GPDs)

- Provide comprehensive description of 3-D partonic structure of the nucleon one of the central problems of non-perturbative QCD
- GPDs can be viewed as correlation functions between different partonic states
- 'Generalised' because they encompass 1-D descriptions by PDFs or by form factors

(the simplest) example: Deeply Virtual Compton Scattering (DVCS)

Factorisation for large $Q^{\mathbf{2}}$ and $\mid \mathbf{t} \mid << Q^{\mathbf{2}}$

4 GPDs for each quark flavour

$$H^{q}(x,\xi,t) \qquad E^{q}(x,\xi,t) \\ \tilde{H}^{q}(x,\xi,t) \qquad \tilde{E}^{q}(x,\xi,t)$$

for DVCS **gluons** contribute at higher orders in α_s

GPDs and Hard Exclusive Meson Production

 \succ factorisation proven only for $\sigma_{\rm L}$ $\sigma_{\rm T}$ suppressed by $1/Q^2$

> wave function of meson (DA) additional non-perturbative term Chiral-even GPDs helicity of parton unchanged

$$H^{q,g}(x,\xi,t) \qquad E^{q,g}(x,\xi,t) \\ \widetilde{H}^{q,g}(x,\xi,t) \qquad \widetilde{E}^{q,g}(x,\xi,t)$$

Chiral-odd GPDs helicity of parton changed (not probed by DVCS)

$H^q_T(x,\xi,t)$	$E_T^q(x, \xi, t)$
$\widetilde{H}^{q}_{T}(x,\xi,t)$	$\widetilde{E}_{T}^{q}(x,\xi,t)$

Flavour separation for GPDs example:

$$\begin{split} E_{\rho^{0}} &= \frac{1}{\sqrt{2}} \left(\frac{2}{3} E^{u(+)} + \frac{1}{3} E^{d(+)} + \frac{3}{4} E^{g} / x \right) & \text{Diehl, Vinnikov} \\ E_{\omega} &= \frac{1}{\sqrt{2}} \left(\frac{2}{3} E^{u(+)} - \frac{1}{3} E^{d(+)} + \frac{1}{4} E^{g} / x \right) \\ E_{\phi} &= -\frac{1}{3} E^{s(+)} + \frac{1}{4} E^{g} / x \end{split}$$

- contribution from gluons at the same order of $\alpha_{\mbox{\tiny s}}$ as from quarks

2005

Basic ingredients:

unique secondary beam line M2 from the SPS

delivers: • high energy naturally polarised μ^+ or μ^- beams, P \approx -80% / +80%

• negative or positive hadron beams

two-stage forward spectrometer SM1 + SM2

≈ 300 tracking detectors planes – high redundancy

+ calorimetry, µID, RICH

flexible target area
 for the reported results 2.5m long LH₂ target

Data and selected samples

- Data collected within four weeks in 2012 using 2,5 m long LH2 target
- Data with polarised ($|P| \approx 0.8$) μ^+ and μ^- beams taken separately
- Independent analyses of two samples:

(i)
$$\mu p \to \mu' p' \rho^0$$

 $\longrightarrow \pi^+ \pi^-$ BR $\approx 99\%$.

(ii)
$$\mu p \to \mu' p' \omega$$

 $\downarrow \to \pi^+ \pi^- \pi^0 \qquad BR \approx 89\%$
 $\downarrow \to \gamma\gamma \qquad BR \approx 99\%.$

- Results for (i) preliminary (first shown at DIS 2021)
- Results for (ii) published in 2021 (EPJC **81**,126 (2021))

Selection of exclusive ρ^0 sample for SDMEs analysis

 $M_{\pi^*\pi^-}$ (GeV/ c^2)

Selection of exclusive ω sample for SDMEs analysis

Topological selection: scattered muon $\mu p \rightarrow \mu' \omega p'$ $\downarrow \pi^+ \pi^- \pi^0$ $\downarrow \gamma + \gamma$ + two hadrons with opposite charges + two neutral clusters in calorimeters **Recoil proton detector** not included in selections $1 < Q^2 < 10 \text{ GeV/}c^2$ $0.01 < p_T^2 < 0.5 (\text{GeV}/c)^2$ W > 5 GeVAfter all selections 0.1 < y < 0.9≈ 3 000 evts $E_{\rm miss} = \frac{(M_{\chi}^2 - M_{\rho}^2)}{(2M_{\rho})}$ / $E_{\rm miss}$ / < 3 GeV Events/(13.1 MeV/c²) 000 000 000 000 000 Events/(0.3 GeV) 00 00 Events/(5.4 MeV/c²) 350 600 $f_{\rm bg} = 0.28$ 500 --Gauss --B-W background background 150 400 _sum -sum 300 100 150 200 100 50 Prograduces 100 50 F 0 ²⁵⁰ 300 *Μ*_{γγ}(MeV/*c*²) 100 150 200 15 20 *E_{miss}* (GeV) 50 -5 0 5 10 20 750 800 900 650 700 850 M π+π-π⁰ (MeV/c²)

Experimental access to SDMEs

$$W^{U+L}(\Phi,\phi,\cos\Theta) = W^U(\Phi,\phi,\cos\Theta) + P_B W^L(\Phi,\phi,\cos\Theta) \propto \frac{1}{d\theta}$$

SDMEs: "amplitudes" of decomposition of W^{U+L} in the sum of 23 terms with different angular dependences

[K. Schilling and G. Wolf, Nucl. Phys. B61, 381 (1973)]

15 unpolarised SDMEs (in W^U) and 8 polarised (in W^L)

- Unbinned ML fit to experimental W^{U+L} taking into account
 - total acceptance
 - fraction of background in the signal window
 - anglar distribution of background W^{U+L}_{bkg} (determined either from LEPTO MC or real data side band)

 $d\sigma$

for ω : angle Θ between direction of ω and normal to decay plane

Results on SDMEs for exclusive ρ^0 production for total kin. range

$$1 \text{ GeV}^2 < Q^2 < 10 \text{ GeV}^2$$

$$5 \text{ GeV} < W < 17 \text{ GeV}$$

$$0.01 \text{ GeV}^2 < p_T^2 < 0.5 \text{ GeV}^2$$

 $< Q^{2} > = 2.4 \text{ GeV}^{2}$ < W > = 9.9 GeV $< p_{T}^{2} > = 0.18 \text{ GeV}^{2}$

- SDMEs grouped in clasess: A, B, C, D, E corresponding to different helicity transitions
- SDMEs coupled to the beam polarisation shown within green areas
- if SCHC holds all elements in classes C, D, E should be 0

not obeyed for transitions $\gamma^*_{\ T} \! \rightarrow \! \rho_L$

Transitions $\gamma^*_{\ T} \rightarrow \rho_L$

possible GPD interpretation Goloskokov and Kroll, EPJC 74 (2014) 2725

0

5

10

15

 $W (\text{GeV}/c^2)$

2

 $O^2 (\text{GeV}/c)^2$

contribution of amplitudes depending on chiral-odd ("transversity") GPDs $H_T, \overline{E}_T = 2\widetilde{H}_T + E_T$

0

0

0.2

0.6

 $p_T^2 (\text{GeV}/c)^2$

0.4

COMPASS preliminary

Results on SDMEs for exclusive ω production for total kin. range

•
$$r_{00}^5 \propto \operatorname{Re}[\langle \overline{E}_T \rangle_{LT}^* \langle H \rangle_{LL} + \frac{1}{2} \langle H_T \rangle_{LT}^* \langle E \rangle_{LL}]$$

 $\begin{array}{l} 1 \ {\rm GeV^2 < Q^2} \ < 10 \ {\rm GeV^2} \\ 5 \ {\rm GeV} < W \ \ < 17 \ \ {\rm GeV} \\ 0.01 \ {\rm GeV^2} < {\rm p_T^2} < 0.5 \ {\rm GeV^2} \end{array}$

 $< Q^2 > = 2.1 \text{ GeV}^2$ < W > = 7.6 GeV $< p_T^2 > = 0.16 \text{ GeV}^2$

GK model, EPJA 50 (2014) 146 (1st version) parameters constrained mostly by HERMES results for ρ^0 and ω

COMPASS provides new constraints for parameterisation of the model

ρ⁰ and ω results for class C complementary

 \overline{E}_T and H have the same signs for u and d quarks H_T and E have opposite signs for u and d quarks

for ω the first term in Eq. (•) still dominates, but sensitivity to $H_{\rm T}$ is enhanced compared to ρ^0

Contribution of helicity-flip NPE amplitudes to ρ^0 cross section

quantified by the ratios $\tau_{ij} = \frac{|T_{ij}|}{\sqrt{N}}$ calculated as combinations of SDMEs *cf. HERMES Collab., EPJC 63, 659 (2009)*

 T_{01} , T_{10} and T_{1-1} are the NPE amplitudes for the transitions $\gamma_T^* \to \rho_L^0$, $\gamma_L^* \to \rho_T^0$, $\gamma_T^* \to \rho_{-T}^0$ and \mathcal{N} is a normalisation constant

- > only τ_{01} significantly different from zero much smaller τ_{01} and τ_{01}
- pattern consistent with different degrees of SCHC violation in classes C, D and E
- \blacktriangleright increase of au_{01} with increasing Q^2 and ${p_T}^2$

fractional contribution of helicity-flip NPE amplitudes to the full cross section

 $\tau_{\text{NPE}}^2 = (2\epsilon |T_{10}|^2 + |T_{01}|^2 + |T_{1-1}|^2) / \mathcal{N} \approx 2\epsilon \tau_{10}^2 + \tau_{01}^2 + \tau_{1-1}^2$

≈ 0.03 averaged over total kinematic range

Unnatural parity exchange contribution

$$u_{1} = 1 - r_{00}^{04} + 2r_{1-1}^{04} - 2r_{11}^{1} - 2r_{1-1}^{1}$$
$$u_{1} = \sum \frac{4\epsilon |U_{10}|^{2} + 2|U_{11} + U_{-11}|^{2}}{N}$$

numerator depends only on UPE amplitudes u1 > 0 signature of UPE contribution

NPE-to-UPE asymmetry of cross sections

NPE-to-UPE asymmetry of cross sections for transitions $\gamma_T^* \rightarrow V_T$

$$P = \frac{2r_{1-1}^{1}}{1 - r_{00}^{04} - 2r_{1-1}^{04}} \approx \frac{d\sigma_{T}^{N}(\gamma_{T}^{*} \to V_{T}) - d\sigma_{T}^{U}(\gamma_{T}^{*} \to V_{T})}{d\sigma_{T}^{N}(\gamma_{T}^{*} \to V_{T}) + d\sigma_{T}^{U}(\gamma_{T}^{*} \to V_{T})}$$

UPE and NPE contributions (contd.)

GPD interpretation Goloskokov and Kroll, EPJA 50 (2014) 146

UPE amplitudes depend on helicity GPDs $\widetilde{E}, \widetilde{H}$

the former supplemented by π^0 pole contribution treated as one-boson exchange

parameters constrained by HERMES SDMEs for ω (except the sign of $\pi\omega$ transition form factor)

 \succ the pion pole contribution dominates UPE at small W and p_{T}^{-2}

> $\pi\omega$ transition form factor $(g_{\pi\omega})$ about **3 times larger** than $\pi\rho^0$ transition f.f. $(g_{\pi\rho})$: $g_{\pi\rho} \simeq \frac{e_u + e_d}{e_u - e_d} g_{\pi\omega}$

NPE amplitudes depend on GPDs H and E

NPE contribution for ρ^0 production about **3 times larger** than for ω production (for amplitudes) this factor 3 is due to the dominant contribution from gluons and sea quark GPDs while the contribution from valence quarks is about the same for ω and ρ^0 production

Thus on the cross section level

leaving aside other small conributions

$$d\sigma_T^N \approx d\sigma_T^U$$
 for ω *P* asymmetry ≈ 0
 $d\sigma_T^N \approx 9 \ d\sigma_T^U$ for ρ^0 *P* asymmetry ≈ 1

Summary and outlook

- > measured SDMEs in hard exclusive ρ^0 and ω muoproduction at energies 5 17 GeV
- access to helicity amplitudes => constraints on GPD models
- SDMEs a sensitive tool to access subleading amplitudes (via interference)
- ➤ violatation of SCHC observed for transitions $\gamma^*_T \rightarrow V_L$ in GPD framework described by contribution of chiral-odd "transversity" GPDs
- Iarge contribution of UPE transitions for ω, only a few % for ρ^0 in GK model described predominantly by the π^0 pole exchange
- > planned analysis of SDMEs and cross sections for exclusive ϕ , ω and J/ ψ production collected in 2016+2017 with statistic ~ 10 times larger than from 2012

