Drell-Yan and J/psi with RF-separated beams

Beam specifications RF-separated beams for AMBER - Kick Off Meeting

Márcia Quaresma on behalf of the Drell-Yan subgroup - 30th September 2021

Outlook

- \checkmark Drell-Yan and J/psi physics goals
- ✓ Drell-Yan energy dependence
- ✓ Beam intensity limitations
- ✓ Drell-Yan geometrical acceptance
- ✓ Beam assumptions
- ✓ Energy effect
- ✓ Beam particle identification
- ✓ Beam divergence
- ✓ Summary

RF-separated beams for AMBER

Outlook

- \checkmark Drell-Yan and J/psi physics goals
- ✓ Drell-Yan energy dependence
- ✓ Beam intensity limitations
- ✓ Drell-Yan geometrical acceptance
- ✓ Beam assumptions
- ✓ Energy effect
- ✓ Beam particle identification
- ✓ Beam divergence
- ✓ Summary

Disclaimer:

This is not an extensive talk - I will briefly draw your attention to the main beam specifications

RF-separated beams for AMBER

Physics goal

Study the kaon structure

- The valence and sea structure through the Drell-Yan measurement
- The valence and the gluon structure through the J/psi measurement

RF-separated beams for AMBER

Physics goal

Study the kaon structure

Márcia Quaresma (LIP)

- The valence and sea structure through the Drell-Yan measurement
- The valence and the gluon structure through the J/psi measurement

beam characteristics key factors:

- the beam energy limited by the RFseparation techniques
- the beam intensity limited by the radiation protection requirements
- the beam purity limited by the RFseparation techniques together with the beam identification (with CEDARS)

Drell-Yan energy dependence

Márcia Quaresma (LIP)

RF-separated beams for AMBER

30th September 2021

Drell-Yan energy dependence

Márcia Quaresma (LIP)

RF-separated beams for AMBER

30th September 2021

Drell-Yan energy dependence

Main players to constrain the statistical uncertainty: beam energy and beam intensity

Márcia Quaresma (LIP)

RF-separated beams for AMBER

30th September 2021

Beam intensity limitations

Dose equivalent inside AMBER hall - with closed bunker

Open bunker

Márcia Quaresma (LIP)

RF-separated beams for AMBER

 studies on the target region shielding suggest the possibility to increase the intensity

Beam intensity limitations

Dose equivalent inside AMBER hall - with closed bunker

Open bunker

Márcia Quaresma (LIP)

- studies on the target region shielding suggest the possibility to increase the <u>intensity</u>
- our studies are now being investigated by the Radiation Protection group to further evaluate the feasibility and requirements of such a bunker

RF-separated beams for AMBER

Beam intensity limitations

Dose equivalent inside AMBER hall - with closed bunker

Open bunker

Márcia Quaresma (LIP)

RF-separated beams for AMBER

- studies on the target region shielding suggest the possibility to <u>increase the</u> <u>intensity</u>
- our studies are now being investigated by the Radiation Protection group to further evaluate the <u>feasibility and requirements of</u> <u>such a bunker</u>

Beam purity

- directly related with the intensity
- Is a % of the beam that is made of kaons
- Beam particle identification is crucial (with CEDARs)
- the possibility to measure pion and proton induced Drell-Yan and J/psi in parallel with kaons is very useful for comparisons

Drell-Yan geometrical acceptance

- the beam energy affects the lepton pairs geometrical acceptance
 - to keep a similar geometric acceptance of about 40% as for AMBER Phase-I the spectrometer has to be compressed

RF-separated beams for AMBER

Drell-Yan geometrical acceptance

the beam energy affects the lepton pairs geometrical acceptance

 to keep a similar geometric acceptance of about 40% as for AMBER Phase-I the spectrometer has to be compressed

Márcia Quaresma (LIP)

RF-separated beams for AMBER

- a possibility is to consider an active absorber (magnetised iron detector)
- possibility to use electron pairs in addition to the muons
 - dedicated R&D is needed

Beam assumptions

- primary intensity 7×10^7 particles/s
- kaon purity 30% for both charges
- 2 years data taking (140 days per year) and equal time sharing between the two beam charges
- 3 different energies are compared

Márcia Quaresma (LIP)

RF-separated beams for AMBER

30th September 2021

Beam assumptions

- primary intensity 7×10^7 particles/s
- kaon purity 30% for both charges
- 2 years data taking (140 days per year) and equal time sharing between the two beam charges
- 3 different energies are compared

Márcia Quaresma (LIP)

RF-separated beams for AMBER

Overall Statistics

Experiment	Target	Beam	Beam intensity	Beam energy	DY mass	DY event	
	type	type	(part/sec)	(GeV)	(GeV/c^2)	$\mu^+\mu^-$	e
NA3	6 cm Pt	K ⁻		200	4.2 - 8.5	700	
This exp.	100 cm C	K ⁻	2.1×10^{7}	80	4.0 - 8.5	25,000	1.
				100	4.0 - 8.5	40,000	1′
				120	4.0 - 8.5	54,000	2
		K ⁺	2.1×10^{7}	80	4.0 - 8.5	2,800	1
				100	4.0 - 8.5	5,200	2
				120	4.0 - 8.5	8,000	2
This exp.	100 cm C	π^{-}	4.8×10^{7}	80	4.0-8.5	65,500	2
				100	4.0 - 8.5	95,500	3
				120	4.0 - 8.5	123,600	3

Energy effect

Márcia Quaresma (LIP)

RF-separated beams for AMBER

 $=\frac{\sigma^{K^+}}{\sigma^{K^-}-\sigma^{K^+}}$ $R_{s/v}$

Energy effect

lowest energy limit to not compromise the relevance of the results

~10% uncertainty

Márcia Quaresma (LIP)

RF-separated beams for AMBER

 $\frac{\sigma^{K^+}}{\sigma^{K^-} - \sigma^{K^+}}$ $R_{s/v}$

J/psi measurement

Márcia Quaresma (LIP)

more than 300k events for each kaon charge are expected - safe for statistics

RF-separated beams for AMBER

Beam particle identification

- The beam particle identification is <u>crucial</u> for this measurement:
 - preformed using CEDAR detectors

RF-separated beams for AMBER

30th September 2021

Beam particle identification

- The beam particle identification is <u>crucial</u> for this measurement:
 - preformed using **CEDAR detectors**
 - relevant beam characteristics
 - beam divergence
 - beam spot
 - beam momentum

Márcia Quaresma (LIP)

RF-separated beams for AMBER

30th September 2021

Beam particle identification

- The beam particle identification is <u>crucial</u> for this measurement:
 - preformed using **CEDAR detectors**
 - relevant beam characteristics
 - beam divergence
 - beam spot
 - beam momentum

Márcia Quaresma (LIP)

RF-separated beams for AMBER

Studies are being preformed to determine the minimal requirements

30th September 2021

Beam divergence

Monte-Carlo simulation of the beam angle at the CEDAR position (considering) similar conditions to 2018 COMPASS Drell-Yan run, 190 GeV pion beam and a divergergence of RMS of dx/dz * RMS of dy/dz = 0.11*0.09 mrad)

The majority of the kaons is out of the CEDARs acceptance

More studies are ongoing

RF-separated beams for AMBER

Smaller impact for lower energies, but still a parallel beam is very important

30th September 2021

Summary

- The <u>feasibility of the Drell-Yan measurement</u> with kaon beams is constrained by: The beam energy - minimal requisite 80 GeV

 - The **beam intensity** minimal requisite 7×10^7 particles/s
 - The **beam purity** minimal requisite 30%
 - The beam identification beam characteristics (divergence, spot, momentum spread) at the CEDARS

Summary

- The <u>feasibility of the Drell-Yan measurement</u> with kaon beams is constrained by: The beam energy - minimal requisite 80 GeV

 - The **beam intensity** minimal requisite 7×10^7 particles/s
 - The **beam purity** minimal requisite 30%
 - The beam identification beam characteristics (divergence, spot, momentum spread) at the CEDARS

Thank you for your attention

RF-separated beams for AMBER

