

COMPASS results on nucleon spin and structure

Fabienne KUNNE CEA /IRFU Saclay, France

- Nucleon longitudinal & transverse spin
- Quark Fragmentation functions
- Generalized parton distributions
- π induced Drell-Yan and J/Psi production

LC-2021, Jeju Island Korea and online, Nov 29-Dec 3, 2021

COMPASS at **CERN**

160-200 GeV

polarized muon beam DIS pion beam: Drell-Yan Long solid polarized targets, LH2 target & nuclear targets for DY

Nucleon spin - longitudinal

Nucleon Spin $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L$

How is the nucleon spin distributed among its constituents?

quark gluon orbital momentum

 $\Delta \Sigma \text{ : sum over } u, d, s, \overline{u}, \overline{d}, \overline{s} \\ \text{ can take non half-integer value:} \\ \text{ superposition of several spin states}$

$$\Delta q = \overrightarrow{q} - \overleftarrow{q}$$

Parton spin parallel or anti parallel to nucleon spin

 $\Delta\Sigma$ Today:

Precise world data on polarized DIS:

 $g_1 + SU_f(3)$ $a_0 = \Delta \Sigma \sim 0.3$

Quark spin contribution ~ 30%

Confirmed by results from Lattice QCD on $\Delta\Sigma_{u,d,s}$

Large experimental effort on :

- ∆G measurement

also because $a_0 = \Delta \Sigma - n_f (\alpha_s/2\pi) \Delta G$ (AB scheme)

- **3D** mapping of nucleon and constraining L through DVCS and Hard Exclusive Meson Production

QCD fits- World data on g_1^p and g_1^d

 $d g_1$

 $d Log(Q^2)$

 $-\infty -\Delta g(x,Q^2)$

Polarized Deep Inelastic Scattering Nucleon spin structure functions g₁

 \rightarrow g₁ (x,Q²) as input to global QCD fits for extraction of $\Delta q_f(x)$ and $\Delta g(x)$

Need to use constraint from pp data (as in DSSV, NNPDF... fits)

 $\mu'(k')$ $\mu(k)$ $\gamma *$ $\overrightarrow{N}(P)$

DIS

PLB753 (2016) 18

NLO pQCD fit to g₁ DIS world data

- Assume functional forms for $\Delta\Sigma$, ΔG and Δq^{NS}
- Use DGLAP equations, relating $\Delta\Sigma$, ΔG evolutions .
- Fit g_1^{p} , g_1^{d} , g_1^{n} DIS world data. (SU₃)
- Extract $\Delta \Sigma$ ΔG Quarks Gluons

∆G not well constrained using DIS only

Obtain solutions with $\Delta G>0$ and $\Delta G<0$ Solution with $\Delta G>0$ agrees with result from DSSV++ which uses RHIC pp data

 $\Delta\Sigma$ well constrained in valence region $\Delta\Sigma$ = 0.31 (5) at Q²=3 (GeV/c)²

Still large uncertainty coming from the bad knowledge of functional forms

Global fits to polarized PDFs (I)

Fits to world data, including $\vec{p} \cdot \vec{p}$ collider data. Many fitters. Some examples:

Gluon helicity \Delta G/G direct measurement

Results are in agreement with fits from NNPDF $\int_{0.05}^{0.2} \Delta g(x) dx \simeq 0.20$

Quark helicities from semi-inclusive DIS $\rightarrow \ell$

 $l^{
ightarrow}p^{
ightarrow}
ightarrow l\,h^{+/-}$ X

Outgoing hadron tags quark flavor (via quark fragmentation functions)

Flavour separation of quark helicities:

NB: The SIDIS extraction uses input of quark Fragmentation Functions, not that well determined yet, especially for the strange quark sector.

 $D_i^h(z)$

 \overrightarrow{N}

- More than 1200 points in total, various Q² staggered vertically for clarity
- Strong z dependance
- $M(\pi^+) \sim M(\pi^-)$ and $M(K^+) > M(K^-)$

PLB 764 (2017) 001 PLB 767 (2017) 133

Kaons- Quark fragmentation functions from NLO fits

Extensive sets of SIDIS kaon dataCOMPASS PLB 767 (2017) 133change significantly flavor decomposition of FFs (& PDFs)

Ex1: **DEHSS-17** fit to quark FF, includes

Ex:2: JAM18 w/wo SIDIS data

Combined fit of PDFs and FFs (prelim)

Z Also simultaneous/ iterative fits of PDFs & FFs: *Ex: Borsa, Sasso, Stratmann, PRD96 (2017)* & *JAM20-sidis, PRD104 (2021) 016015* SIA + SIDIS data : strong preference for smaller strange to nonstrange PDF ratio, and enhanced DsK' →worth revisiting $\Delta s(x)$ extraction from SIDIS data

F. Kunne

M(K⁻)/ M(K⁺) Results vs missing mass M_X

- $M(K^-)/M(K^+)$ shows unexpected strong rise with M_X
- Suggests to take into account the available phase space for hadronisation, in the formalism

$R_{\rm p} = M(\bar{\rm p})/M(\rm p)$

Stronger suppression of \overline{p} vs p, compared to K vs K⁺.

Transverse Momentum Dependent distributions TMDs

Transverse Momentum Dependent distr. : TMDs

Importance of hadron transverse momentum p_T :

- P_T dependence results from:
 - intrinsic k_{\perp} of the quarks
 - p_{\perp} generated in the quark fragmentation

Global analyses of SIDIS, Drell-Yan and Z production data with TMD Q² evolution

Z production

Transverse momentum distribution

TMDs- Collins and Sivers functions (SIDIS)

- Access via SIDIS, transversely polarized target
- Measure simultaneously several azimuthal asymmetries, out of which :

Collins: Outgoing hadron direction & quark transverse spin

Sivers: Nucleon spin & quark transverse momentum k_T

TMDs, Collins asymmetry \rightarrow Transversity

F. Kunne

TMDs, Sivers asymmetry → Sivers function

Correlation between Nucleon spin & quark transverse momentum k_T

Anselmino et al., JHEP04 (2017)046

TMDs Collins & Sivers. Recent global fits

Many global analyses of SIDIS, Drell-Yan, pp and e+e-.

Great progress: theoretical developments, large data sets, uncertainty studies JAM20, Etchevaria et al., Anselmino et al., Radici, Bacchetta, Kang et al., D'Alesio et al., Boglione et., Bury et al. .. e.g.:

JAM20, PRD102, 054002 (2020)

TMDs, Transversity h₁ / tensor charge

More data on deuteron needed COMPASS projection for 2022 data, pol. 6LiD :

With 2022 data, expect improvement on uncertainties by factors of : \sim 2 (u), \sim 3 (d)

F. Kunne

TMDs, new approach: weighted asymmetries

SIDIS, target transverse spin

$$A_{Siv}^{(p_T^h/zM)}(x,z) = 2 \frac{\sum_q e_q^2 f_{1T}^{\perp(1)\,q}(x) \cdot D_1^q(z)}{\sum_q e_q^2 f_1^q(x) \cdot D_1^q(z)},$$

$$f_{1T}^{\perp(1)}(x,Q^2) = \int d^2 k_T \frac{k_T^2}{2M^2} f_{1T}^{\perp}(x,k_T,Q^2).$$

Sivers asymmetry, with weight p_T/zM No more convolution of TMDs and FFs but a product of integrals.

\rightarrow extract first moment of Sivers without assumption on k_T dependence

TMDs, Target spi-dnependent azimuthal asymmetries

Results on TMDs are characterised by an unprecedented precision, covering a wider kinematic range and many observables.

F. Kunne

TMDs, Sivers gluon

Sivers asymmetry: correlation between nucleon transverse spin & parton transverse momentum.

Measured in SIDIS with transversely polarized target, (already done for quarks), now for **gluons** from azimuthal asymmetry for **PGF process**

$$A_{PGF}^{Siv,d} = -0.14 \pm 0.15 \text{(stat.)} \pm 0.10 \text{(syst.)}$$
$$\langle x_g \rangle = 0.13$$

 $A_{PGF}^{Siv,p} = -0.26 \pm 0.09(\text{stat.}) \pm 0.06(\text{syst.})$ $\langle x_g \rangle = 0.15$

COMPASS Phys. Lett. B 772, 854 (2017).

TMDs, ρ⁰

ρ⁰ COMPASS first Collins and Sivers measurement A.Moretti SPIN21

ρ^0 Collins

positive asymmetry opposite to π +, as expected from models large at small p_T

ρ⁰ Sivers

positive asymmetry, similarly to π +, as expected

GPDs - Generalized Parton Distributions

160 GeV μ beam

Physics goals:

- 3D mapping of nucleon
- access to Orbital Angular Momentum

Determine 4 GPDs : $H, E, \tilde{H}, \tilde{E}$ (Re and Im parts) via 'exclusive' processes: DVCS (γ) and DVMP (ρ, ω, ϕ)

 $\mu \ \mathbf{p} \rightarrow \mu' \ \mathbf{p} \gamma$

DVCS interferes with Bethe-Heitler process \rightarrow Can use interference terms or pure DVCS production with appropriate combinations of beam sign and polarization.

Way to it:

- Collect very large sample of data, for various observables and several kinematic variables
- Global analyses to extract 4x2 Compton Form Factors CFFs
- Deconvolutions to finally access GPDs.

DVCS- t-slope of Cross-section (COMPASS)

 $\mu^{+/-} p \rightarrow \mu p \gamma$

Measurement of proton transverse size vs x_B

 $\sigma^{\text{DVCS}}/\text{dt} \sim \exp^{-B|t|}$ B(x_B) = $\frac{1}{2} < r_{\perp}^{2}(x_{B}) >$

Combining data from μ + and μ - beams measure t-slope of DVCS cross section \rightarrow x dependence of transverse size of the nucleon

New preliminary COMPASS result:

Drell-Yan and J/ ψ from π induced dimuon production $\pi N \rightarrow \mu^+ \mu^-$ 190 GeV π beam $\times 10^3$ COMPASS preliminary counts / (0.04 GeV/c² J/w W 4 COMPASS 2015 NH₂ data Drell-Yan 2018 data (~50%) Comb. background 10^{5} ----- J/ψ (MC) $4.3 < M_{\mu\mu}/(\text{GeV}/c^2) < 8.5$ ψ' (MC) 3 10^{4} ----- Open-charm (MC) Drell-Yan (MC) Total MC + Comb. background NH₃ 10^{3} 2 10^{2} Α He⁴ 1 10 -300-200-1000 8 10 6 M_{uu} (GeV/c²) **Drell-Yan** : - polarized NH₃ target \rightarrow results on TMDs (SIDIS/DY sign change) - W target \rightarrow Lam-Tung relation study J/ψ production high statistics data: - J/ψ TSA and cross-section analysis in progress - study production mechanism, two processes: q-qbar annihilation \rightarrow quark TMDs g g fusion \rightarrow gluon TMDs - search for J/ψ pairs

TMDs in polarized Drell-Yan

Sivers function:

- Non-vanishing orbital angular momentum
- Process dependence expected :

Sign change between SIDIS and Drell-Yan

both measured in COMPASS at similar hard scale

Preliminary results on Lam-Tung relation

 π induced Drell-Yan, W target. $\pi W \rightarrow \mu^+ \mu^-$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \propto \frac{3}{4\pi} \frac{1}{\lambda + 3} \left[1 + \lambda \cos^2 \theta_{CS} + \mu \sin 2\theta_{CS} \cos \varphi_{CS} + \frac{\nu}{2} \sin^2 \theta_{CS} \cos 2\varphi_{CS} \right] \text{ at LO}$$

Lam-Tung violation quantity 2 v - (1- λ) Non zero cos 2 ϕ dependence

- Possible violation of Lam-Tung relation
- $\cos 2\phi$ dependence
- Results compatible with previous data $_{-29}$

J/ ψ pair production in π –N collisions

Search for J/ψ pairs

Goals:

- investigate possible intrinsic charm
- search for T_{4c} states

Result consistent with single parton scattering (SPS) mechanism: $q \overline{q} \rightarrow 2 J/\psi$ $g g \rightarrow 2 J/\psi$

No sign of intrinsic charm d u c \bar{c} c \bar{c}

Summary –

Gluon and quark contribution to nucleon spin

Gluon $\Delta G/G=0.1$ at x=0.1 (photon gluon fusion process) agrees with RHIC $\int \Delta G \sim 0.2$ Unknown contribution at low x

Quarks : $\frac{1}{2} \Delta \Sigma \sim 0.15$ from global QCD fit of g₁ world data; agrees with Lattice QCD Flavor decomposition from SIDIS, down to x ~0.004.

Quark Fragmentation functions:

High z data for K^{-}/K^{+} and pbar/p hadron multiplicity ratios

- Data disagree with current NLO QCD calculations at high z and low ν

- Unexpected rise of ratio $M(K^+) / M(K^-)$ with missing mass, suggesting to take into account the available phase space for hadronisation in formlism.

Transverse Momentum Dependent parton distributions

Extensive and precise results on all azimuthal asymmetries Global analyses

GPDs via DVCS: b slope prelim. result Many data coming and promising framework for global analyses.

Polarized Drell-Yan First ever measurement → Sivers asymmetry (sign change vs SIDIS) Angular distributions: TMDs, Lam-Tung relation...