High-energy spin physics at fixed-target experiments

Fabienne KUNNE
CEA /IRFU Saclay, France

Highlights on measurements of:
• Nucleon spin, Gluon and quark helicities: DIS
• Transverse spin: DIS and Drell-Yan
• Generalized parton distributions : DVCS, HEMP

SPIN21, Matsue, Japan, Oct. 18-22, 2021
HERMES at DESY

27 GeV e+ & e-
Longit. polarized ~ 54%
Gaseous intern. polar target
1995 to 2007

COMPASS at CERN

160-200 GeV
polarized muon beam DIS
pion beam: Drell-Yan
Long solid polarized targets

JLab

12 GeV
Polarized CW e- beam
Pol=85%,
High luminosity

Hall D: hybrid mesons

Hall C

Hall B: GPDs

Hall A: form factors + Moller & SOLID…
Kinematical ranges
Nucleon spin - longitudinal

How is the nucleon spin distributed among its constituents?

\[\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L \]

- \(\Delta \Sigma \): sum over u, d, s, \(\bar{u} \), \(\bar{d} \), \(\bar{s} \)
- can take non half-integer value:
 - superposition of several spin states

\[\Delta q = \vec{q} - \vec{\bar{q}} \]

Parton spin parallel or anti parallel to nucleon spin

\(\Delta \Sigma \) Today:

Precise world data on polarized DIS: \(g_1 + \text{SU}_f(3) \)

\(a_0 = \Delta \Sigma \sim 0.3 \)

Quark spin contribution \(\sim 30\% \)

Confirmed by first results from Lattice QCD on \(\Delta \Sigma_{u,d,s} \)

Large experimental effort on:

- \(\Delta G \) measurement
 - also because \(a_0 = \Delta \Sigma - n_f (\alpha_s/2\pi) \Delta G \) (AB scheme)

- 3D mapping of nucleon and constraining L
 - through DVCS and Hard Exclusive Meson Production

See talk of C. Alexandrou
QCD fits - World data on g_1^p and g_1^d

Polarized Deep Inelastic Scattering

\rightarrow Nucleon spin structure functions g_1

$\rightarrow g_1 (x, Q^2)$ as input to global QCD fits for extraction of $\Delta q_f(x)$ and $\Delta g(x)$

\[
\frac{d g_1}{d \log(Q^2)} \propto -\Delta g(x, Q^2)
\]

However x and Q^2 coverage in DIS not yet sufficient for precise Δg

Need to use constraint from pp data (as DSSV, NNPDF...)

F. Kunne
NLO pQCD fit to g_1 DIS world data

- Assume functional forms for $\Delta \Sigma$, ΔG and Δq^{NS}
- Use DGLAP equations, relating $\Delta \Sigma$, ΔG evolutions
- Fit g_1^p, g_1^d, g_1^n DIS world data. (SU_3)

- Extract $\Delta \Sigma$ Quarks, ΔG Gluons

ΔG not well constrained using DIS only

Obtain solutions with $\Delta G > 0$ and $\Delta G < 0$

Solution with $\Delta G > 0$ agrees with result from DSSV++ which uses RHIC pp data

$\Delta \Sigma$ well constrained in valence region

$\Delta \Sigma = 0.31 (5)$ at $Q^2 = 3$ (GeV/c)2

Still large uncertainty coming from the bad knowledge of functional form
Global fits to polarized PDFs (I)

Fits to world data, including collider data. Many fitters. Some examples:

Blue: DSSLV
from DSSV14 w. replicas and MC average

Green: NNPDFpol1.1

More realistic evaluation of uncertainties

Still some discrepancies in Δs sign (and in Δd position of minimum)

Large uncertainties in ΔG, below $x \sim 0.1$
Global fits to polarized PDFs (II)

A₁ – helicity low x

Small-x evolution equations for g₁
Data from SLAC, CERN, DESY.

- Present projections toward low x
- Expected impact of EIC future data

\[Q^2 = 10 \text{ GeV}^2 \]
Global fits to polarized PDFs (III)

ΔΣ and ΔG

Expected impact of EIC future data on integrals truncated to x ~ 10^{-4}

Huge reduction of uncertainties but need to use SU3
Gluon helicity $\Delta G/G$ direct measurement

Photon Gluon Fusion

$\vec{\mu} \vec{p} \rightarrow \mu' h + h + X$

$Q^2 > 1 \text{(GeV/c)}^2$

Extraction at LO:

$\Delta g/g \ (x=0.1) = 0.11 \pm 0.04 \pm 0.04$

Results are in agreement with fits from NNPDF and DSSV++ using RHIC $\vec{p}\vec{p}$ data, which give

$$\int_{0.05}^{0.2} \Delta g(x) \, dx \simeq 0.20$$
Quark helicities from semi-inclusive DIS

\[l \to p \to l \, h^{+/−} \, X \]

Outgoing hadron tags quark flavor (via quark fragmentation functions)

Flavour separation of quark helicities:

\[\mathbf{Q}^2 = 3 \, (\text{GeV/c})^2 \]

NB: The SIDIS extraction uses input of quark Fragmentation Functions, not that well determined yet, especially for the strange quark sector.

0 HERMES
PRD71(2005)012003

• COMPASS
PLB693(2010)227, using DSS-07 FFs

___ DSSV at NLO

• Full flavour separation \(\rightarrow \, x \sim 0.004 \)
• Sea quark distributions \(\sim \) zero
• Good agreement with global fits
Kaons- Quark fragmentation functions from NLO fits

Extensive sets of SIDIS kaon data change significantly flavor decomposition of FFs (& PDFs)

Ex1: DEHSS-17 fit to quark FF, includes recent kaon SIDIS data.

Ex:2: JAM18 w/wo SIDIS
Combined fit of PDFs and FFs (prelim)

Also simultaneous/ iterative fits of PDFs & FFs:

‘SIA + SIDIS data : strong preference for smaller strange to nonstrange PDF ratio, and enhanced DsK’

-> revisit Δs(x) extraction from SIDIS data

See plenary talk on FFs by F. Ringer
Transverse Momentum Dependent distr. : TMDs

Importance of p_T:
P_T dependence results from:
- intrinsic k_\perp of the quarks
- p_\perp generated in the quark fragmentation

Global analyses of SIDIS, Drell-Yan and Z production data with TMD Q^2 evolution

SIDIS multiplicity (example)

Drell-Yan cross section

Transverse momentum distribution

A. Bacchetta et al., JHEP06 (2017) 081
See also A. Martin talk
Transverse spin- Collins and Sivers functions (DIS)

- Access via SIDIS, transversely polarized target
 \[\mu p^\uparrow \rightarrow \mu h^{+/−} X \]

- Measure simultaneously several azimuthal asymmetries, out of which:
 \[
 \begin{align*}
 \text{Collins:} & \quad \text{Outgoing hadron direction} \& \text{quark transverse spin} \\
 \text{Sivers:} & \quad \text{Nucleon spin} \& \text{quark transverse momentum} k_T
 \end{align*}
 \]

\[A_{\text{Coll}} = \frac{\sum_q e_q^2 \cdot x \cdot h_{Tq}^q \otimes H_{1q}^⊥}{\sum_q e_q^2 \cdot x \cdot q \otimes D_{1q}^h} \]

Collins TMD fragmentation function, depends on spin, and hadron p_T

\[A_{\text{Siv}} = \frac{\sum_q e_q^2 \cdot f_{1Tq}^⊥ \otimes D_{q}^h}{\sum_q e_q^2 \cdot q \otimes D_{q}^h} \]

Unpolarized quark TMD fragmentation function

F. Kunne
Collins asymmetry \rightarrow Transversity h_1

- Large signal for proton target. (compatible with zero for deuteron target)
- Same signal strength seen by HERMES and COMPASS, although different Q^2 (times 4)

Several combined analyses of polarized SIDIS data
HERMES p, COMPASS p and d, and BELLE FF

$h_1^u > 0$ and $h_1^d < 0$
Smaller than helicity

NB: asymmetries also measured for π and K

HERMES PLB 693(2010)
COMPASS PLB 744 (2015)
Anselmino et al., PRD87(2013) 094019
Sivers asymmetry \rightarrow Sivers function

Correlation between Nucleon spin & quark transverse momentum k_T

Large signal with proton target.
Was measured compatible with zero on deuteron

Compared to COMPASS, HERMES (smaller Q^2) has larger signal

HERMES PRL 103 (2009)
COMPASS PLB 744 (2015)

Anselmino et al., JHEP04 (2017)046
Collins & Sivers. Recent global fits

Many global analyses of SIDIS, Drell-Yan, pp and e+e-.
Great progress: theoretical developments, large data sets, uncertainty studies
JAM20, Etchevaria et al., Anselmino et al., Radici, Bacchetta, Kang et al., D’Alesio et al., Boglione et., Bury et al. ...
e.g.:

JAM20, PRD102, 054002 (2020)
Transversity h_1 / tensor charge

More data on deuteron needed
COMPASS projection for 2022 data, pol. 6LiD:

Present
- P all, D 2002-2004

Projected
- P all, D 2021/22 only

<table>
<thead>
<tr>
<th>$\delta_u = \int_{x_0}^1 dx h_1^{u}(x)$</th>
<th>$\delta_d = \int_{x_0}^1 dx h_1^{d}(x)$</th>
<th>$g_T = \delta_u - \delta_d$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present</td>
<td>0.201 ± 0.032</td>
<td>-0.189 ± 0.108</td>
</tr>
<tr>
<td>Projected</td>
<td>0.201 ± 0.019</td>
<td>-0.189 ± 0.040</td>
</tr>
</tbody>
</table>

Expected improvement on uncertainties by factors of : ~2 (u), ~3 (d)
SIDIS transverse spin
TMDs, new approach: weighted asymmetries

\[A_{S_{iv}}^{(p_T/zM)}(x, z) = \frac{2}{\sum_q e_q^2 f_{1T}^{q}(x) \cdot D_1^q(z)} \sum_q e_q^2 f_{1T}^{q}(x) \cdot D_1^q(z) \]

\[f_{1T}^{(1)}(x, Q^2) = \int \frac{d^2 k_T}{2M^2} \frac{k_T^2}{2M^2} f_{1T}^{(1)}(x, k_T, Q^2). \]

\[\rightarrow \text{extract first moment of Sivers without assumption on } k_T \text{ dependence} \]

Sivers asymmetry, with weight \(p_T/zM \)
No more convolution of TMDs and FFs but a product of integrals.

Point by point extraction using \(h^+ \) and \(h^- \) asym (NH3 target)

F. Kunne
More on TMDs

HERMES: extensive 3D analysis update

First Collins & Sivers for p & pbar

- Collins: vanishing
- Sivers: simil. magnitude as π^+

Pretzelosity for π and K

- (quadrupole deformation): no sign

ρ^0 COMPASS first Collins and Sivers measurement

- ρ^0 Collins asym: positive, opposite to π^+, as expected from models large at small p_T
- ρ^0 Sivers asym: positive, similarly to π^+, as expected

F. Kunne
TMDs in polarized Drell-Yan

COMPASS, \(\pi \) induced Drell-Yan on \(\text{pol. NH}_3 \):

\[\text{Sivers function:} \]
non-vanishing orbital angular momentum,
Process dependence expected:
sign change between SIDIS and Drell-Yan
Both measured in COMPASS
at similar hard scale

See also Global analysis SIDIS+Star W, Z data:
only slight preference for Sivers sign-change
(new STAR data not yet included).

\[\text{COMPASS, PRL} 119 \ (2017) \ 112002 \]
GPDs generalized Parton Distributions

Physics goal: 3D mapping of nucleon and access to Orbital Angular Momentum

See theory talk by B. Pasquini

Determine 4 GPDs: $H, E, \tilde{H}, \tilde{E}$ (Re and Im parts)
via ‘exclusive’ processes: DVCS (γ) and DVMP (ρ, ω, ϕ)

Measurements at Jlab, Compass, Hermes and pioneering work at H1 and Zeus

DVCS interferes with Bethe-Heitler process
→ Can use interference terms (e.g. at Jlab) or pure DVCS production
with appropriate combinations of beam sign and polarization (COMPASS).

Way to it:
• Collect very large sample of data, various observables and several kinematic variables
• Global analyses to extract 4x2 Compton Form Factors CFFs
• Deconvolutions to finally access GPDs.
DVCS – Jlab CLAS proton target, e H → e’p γ

\[d^4\sigma(x, Q^2, t, \phi) \text{ and } \Delta(d^4\sigma) \text{ beam spin difference, sensitive to } Im[H] \sim e^{-b(x) t} \]

\(b \) related to proton transverse size

Assuming one GPD, fit to CFF at 3 x values:

- \(Q^2=1.11 \text{ GeV}^2 \)
 - \(x_B=0.126 \)
 - \(A = 5.30\pm0.95 \)
 - \(b = 4.25\pm0.98 \)

- \(Q^2=1.63 \text{ GeV}^2 \)
 - \(x_B=0.185 \)
 - \(A = 4.98\pm0.56 \)
 - \(b = 3.03\pm0.55 \)

- \(Q^2=2.10 \text{ GeV}^2 \)
 - \(x_B=0.304 \)
 - \(A = 1.81\pm1.72 \)
 - \(b = 1.18\pm2.26 \)

\(b \) decreases as \(x_B \) increases

→ proton shrinking with \(x_B \)
DVCS- t-slope of Cross-section (COMPASS)

\[\mu^+/- p \rightarrow \mu^- p \gamma \]

Combining data from μ^+ and μ^- beams (beam spin & charge sum), measure t-slope of DVCS cross section $\rightarrow x$ dependence of transverse size of the nucleon

\[\sigma^{DVCS}/dt \sim \exp^{-B|t|} \]

\[B(x_B) = \frac{1}{2} \langle r_{\perp}^2(x_B) \rangle \]

Measurement of proton transverse size vs x_B

New prelim. COMPASS result:

(J. Giarra talk)

COMPASS preliminary

\[e^{B|t|} \]

\[B = 0.6 \pm 0.6_{stat} \pm 0.3_{sys} \text{ [GeV/c]^2} \]

2016 data : prelim. result

3 x more stat. expected from 2017 data

\[\sigma^{DVCS}/dt \sim \exp^{-B|t|} \]

\[B(x_B) = \frac{1}{2} \langle r_{\perp}^2(x_B) \rangle \]

Curves:

--- GK model at $Q^2=1.8$ & 10 GeV^2

--- KM15 at $Q^2=1.8$ & 10 GeV^2

--- COMPASS: $<Q^2>$ = 1.8 (GeV/c)^2

--- COMPASS: $<Q^2>$ = 1.8 (GeV/c)^2

--- ZEUS: $<Q^2>$ = 3.2 (GeV/c)^2

--- H1: $<Q^2>$ = 4.0 (GeV/c)^2

--- H1: $<Q^2>$ = 8.0 (GeV/c)^2

--- H1: $<Q^2>$ = 10. (GeV/c)^2

--- This analysis, preliminary

--- JHEP 0905 (2009) 108

--- 10 GeV < v < 32 GeV

--- $1 < Q^2 < 5$ (GeV/c)^2

--- $Q^2=1.8$ (GeV/c)^2

--- $Q^2=10$ GeV^2

--- $Q^2=1.8$ & 10 GeV^2
Flavour separation of CFFs

JLab Hall-A neutron and proton DVCS

Benali, Desnault, Mazouz et al., Nature Physics 16 (2020) 191-198
CFFs from globat fits of DVCS data

Example: ‘PARTON’ fit at LO/LT DVCS proton, Including Jlab, HERMES and COMPASS data 2600 / 3970 points with constraints on GPDs (PDFs, elastic Form Factors, limits at $x \to 1$...)

CFFs:

$\Re H$

$\Im H$

Position of up quarks in a proton:

\mathbf{b}_\perp
Summary – Spin at fixed target experiments

Gluon and quark contribution to nucleon spin

Gluon \(\Delta G/G=0.1 \) at \(x=0.1 \) (photon gluon fusion process) agrees with RHIC \(\int \Delta G \sim 0.2 \)

Unknown contribution at low \(x \)

Quarks : \(\frac{1}{2} \Delta \Sigma \sim 0.15 \) from global QCD fit of \(g_1 \) world data

Largest uncertainty comes from functional shape (of \(\Delta G \) also)

Agreement with Lattice QCD

Flavor decomposition from SIDIS, down to \(x \sim 0.004 \).

Transverse Momentum Dependent parton distributions

Extensive and precise results on all azimuthal asymmetries

Global analyses

GPDs via DVCS: Many data coming and promising framework for global analyses.

Bright future See talks on EIC, SPD at NICA, pol. tagets at LHC…