J/ψ pair production in πN collisions at COMPASS

Gridin Andrei (JINR)
On behalf of the COMPASS collaboration
andreigridin@cern.ch
25.03.2020
First evidence of double J/ψ production

The NA3 double J/ψ results:

- $\pi^- (150, 280 \text{ GeV})$ and $p (400 \text{ GeV})$ beams;

- N.B. kinematic distributions are not corrected for the acceptance;

- interpreted using single parton scattering mechanism ($q\bar{q} \rightarrow 2J/\psi$ and $gg \rightarrow 2J/\psi$);

- interpreted using intrinsic charm hypothesis ($|d\bar{u}c\bar{c}c\bar{c}\rangle$ Fock component of pion materialization).

Intrinsic charm of hadron

- The existence of non-perturbative (intrinsic) Fock component in a hadron with c-quarks is postulated:

$$|p\rangle = a_0 |uud\rangle + a_1 |uudg\rangle + a_2 |uudc\bar{c}\rangle + \ldots$$

- In perturbative QCD the extrinsic charm component in hadrons arises from gluon splitting.

- Intrinsic charm contribution is generated non-perturbatively via $gg \to Q\bar{Q}$;

T_{4c}-tetraquarks

- first time T_{4c} states were predicted in 1975;
- many theoretical models ([cc][c̄c] model, Drell-Yan type mechanism, etc) exist;
- $M_{T_{4c}} \approx 6 - 7 \text{ GeV}/c^2$;
- no experimental observations of T_{4c} till 2020;

V.R. Debastiani, F.S. Navarra
Chinese Phys. C 43 013105

Bing-An Li, Keh-Fei Liu

- [cc][c̄c] model
- Drell-Yan type mechanism
The LHCb reported the narrow X(6900) structure in the double J/ψ mass spectrum using proton-proton collision data at $\sqrt{s} = 7, 8$ and 13 TeV.

Model I - X(6900) resonance (without interference):

$m[X(6900)] = 6905 \pm 11 \pm 7 \text{ MeV}/c^2$

$\Gamma[X(6900)] = 80 \pm 19 \pm 33 \text{ MeV}$

Model II - X(6900) + interference between broad structure (6.2-6.8) and SPS:

$m[X(6900)] = 6886 \pm 11 \pm 11 \text{ MeV}/c^2$

$\Gamma[X(6900)] = 168 \pm 33 \pm 69 \text{ MeV}$
COMPASS experiment at CERN
COmmom Muon Proton Apparatus for Structure and Spectroscopy

Phase 1:
- Nucleon Spin Structure (2002-2011)

Phase 2:
- Primakoff (2012)
- Drell-Yan (2015, 2018)
Unique hadron beam in DY runs:

- hadron beam composition: 96.80% π^-, 2.40% \bar{K}, 0.80% \bar{p};
- beam momentum: 190 ± 3 GeV/c;
- intensity: up to 7×10^7 hadrons / sec;
COMPASS Drell-Yan setup

Polarized target:
- two 55 cm long cells filled with NH$_3$ immersed in LHe used in particular in polarized DY studies.

Nuclear targets (Al and W):
- used to remove hadrons originating from target interactions or beam;
- used as an additional nuclear targets:
 - aluminum (A ~ 27): 7cm length;
 - tungsten (beam plug, 120 cm, A ~ 184): first 10 cm used for the physics analyses.
DY and J/ψ studies at COMPASS

- Large statistics of single J/ψ event collected
- Mass resolution: $\sigma_{J/\psi} = 0.181 \text{ GeV/c}^2$
- A shoulder from $\psi(2S)$ is visible
Double J/ψ data at COMPASS

2015: ~4 months of data taking; 2018: ~5 months of data taking;

NH$_3$ target: 25 events
- used for the analysis

Al target: 4 events

W target: 21 events
- large background contamination
- used only for cross-section estimation.
Differential cross-sections

COMPASS results:

![Graphs showing COMPASS preliminary data for\(\psi^3 \) and\(\psi^5 \) distributions.]

The NA3 results:

- Results were interpreted using double IC of pion hypothesis.
- N.B. Double \(J/\psi \) kinematic distributions were published without acceptance correction.

R Vogt, S.J. Brodsky
The COMPASS double J/ψ mass spectrum does not contain any evident signal from T_{4c} states.
Double J/ψ production mechanisms

The **SPS + Intrinsic Charm** fit:

- the double parton scattering (DPS) is not considered in the fit;
- the DPS contribution at $\sqrt{s} = 18.9$ GeV is less than 8% (**arXiv:1909.06195 [hep-ph]**);
- the data are consistent with pure SPS hypothesis.

SPS curve:
- Color Singlet J/ψ production model.

IC curve:
Double J/ψ cross-section measurement

COMPASS preliminary

- $\sigma_{2J/\psi} / \sigma_{J/\psi}$
- $\sigma_{2J/\psi}^{\text{NH3}} / \sigma_{J/\psi}$
- $\sigma_{2J/\psi}^W / \sigma_{J/\psi}$
- $\sigma_{2J/\psi}^{\text{Al}} / \sigma_{J/\psi}$

Main sources of systematics:
- uncertainty of $\sigma_{J/\psi}$
- background estimation
- acceptance of double J/ψ
- acceptance of single J/ψ
- uncertainty of the number of single J/ψ

COMPASS results do not contradict to NA3 values.
No A-dependence of $\sigma_{2J/\psi}$ was found.

The measured by the NA3
$\sigma_{J/\psi} = 4.9 \pm 0.77 \frac{nb}{\text{nucleon}}$ was used for the estimation of $\sigma_{2J/\psi}$.
Summary

1. Double J/ψ hadroproduction is a tool:
 • to study the intrinsic charm component of hadrons
 • to search for bound T_{4c} states.

2. The COMPASS collaboration:
 • has searched for double J/ψ events produced in NH$_3$, Al and W targets
 • has estimated double J/ψ production cross-section.

3. The COMPASS data are consistent with SPS production mechanism.

4. No evidence of presence of T_{4c} states in the double J/ψ mass spectrum.
BACKUP
DPS/SPS ratio and generated SPS MC

J.-P. Lansberg, H.-S. Shao

- The DPS contribution is expected to be low at $\sqrt{s} = 18.9$ GeV.

- The generated distributions for double J/ψ MC (SPS sample, HELAC-Onia generator):