Meson-induced Quarkonium Production

Jen-Chieh Peng University of Illinois at Urbana-Champaign

3rd Proton Mass Workshop; Origin and Perspective

14-16 January 2021 Argonne National Laboratory America/New_York timezone

Meson-induced Quarkonium Production

- Why is it interesting?
 - Compared to proton, very little is known about partonic contents of pion and kaon
 - Mass decomposition for pion and kaon?
 - Gluon content in meson via J/ Ψ production?
 - Exclusive production of J/Ψ with pion beam near threshold?

Meson partonic content from the Drell-Yan Process

MASSIVE LEPTON-PAIR PRODUCTION IN HADRON-HADRON COLLISIONS AT HIGH ENERGIES*

Sidney D. Drell and Tung-Mow Yan

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305 (Received 25 May 1970)

$$p+p \rightarrow (\mu^+\mu^-) + \cdots$$

Our remarks apply equally to any colliding pair such as (pp), $(\bar{p}p)$, (πp) , $(\gamma \rho)$ and to final leptons $(\mu^+\mu^-)$, $(e\bar{e})$, $(\mu\nu)$, and $(e\nu)$.

(4) The full range of processes of the type (1) with incident p, \overline{p} , π , K, γ , etc., affords the interesting possibility of comparing their parton and antiparton structures.

(1)

List of Drell-Yan experiments with π^- beam Experiments at CERN and Fermilab

Exp	P (GeV)	targets	Number of D-Y events
WA11	175	Be	500 (semi-exclusive)
WA39	40	W (H ₂)	3839 (all beam, M > 2 GeV)
NA3	150, 200, 280	Pt (H ₂)	21600, 4970, 20000 (535, 121, 741)
NA10	140, 194, 286	W (D ₂)	~84400, ~150000, ~45900 (3200,, 7800)
E331/E444	225	C, Cu, W	500
E326	225	W	
E615	80, 252	W	4060, ~50000

• Relatively pure π^- beam; J/ Ψ production also measured

• Relatively large cross section due to $\overline{u}d$ contents in $\pi_{\overline{4}}$

For a very long time, only four pion parton distribution functions were available

- First: OW-P (PRD 30, 943 (1984))
 - LO QCD
 - Drell-Yan data from E537 and NA3

- Second: ABFKW-P (PL 233, 517 (1989))
 NLO QCD
 - Direct photon data from WA70 and NA24
 - Sea-quark distribution from NA3 Drell-Yan

For a very long time, only four pion parton distribution functions were available

- Third: GRV-P (Z. Phys. C53, 651 (1992))
 - Only valence and valence-like gluon at initial scale. Sea is entirely from QCD evolution
 - Valence distribution from fit to direct photon data
- Fourth: SMRS (PR D45, 2349 (1992))
 - NA10 and E615 D-Y data
 - WA70 direct photon data
- Need new global fits to all existing data
- Need new experimental data with pion and kaon beams

First Monte Carlo global QCD analysis of pion parton distributions

P. C. Barry,¹ N. Sato,² W. Melnitchouk,³ and Chueng-Ryong Ji¹

- Drell-Yan data from NA10 and E615
- Leading-neutron tagged DIS from HERA (H1 and ZEUS) provides information on the pion PDFs at small *x*
- Uncertainties of the pion PDFs are determined

Implications of the JAM results

The tagged-DIS data significantly reduce the uncertainty of the pion PDFs
Further measurements of tagged-DIS can be pursued at JLab and EIC

PHYSICAL REVIEW D 102, 014040 (2020)

Parton distribution functions of the charged pion within the xFitter framework

Ivan Novikov,^{1,2,*} Hamed Abdolmaleki,³ Daniel Britzger,⁴ Amanda Cooper-Sarkar,⁵ Francesco Giuli,⁶ Alexander Glazov,^{2,†} Aleksander Kusina,⁷ Agnieszka Luszczak,⁸ Fred Olness,⁹ Pavel Starovoitov,¹⁰ Mark Sutton,¹¹ and Oleksandr Zenaiev,¹²

(xFitter Developers' team)

- Drell-Yan data from NA10 and E615
- Direct photon production data from WA70
- Uncertainties of the pion PDFs are determined
- Valence distribution is well determined, but not the sea and gluon distributions

A New Extraction of Pion Parton Distributions in the Statistical Model

Claude Bourrely^a, Franco Buccella^b, Jen-Chieh Peng^c

Physics Letters B 813 (2021) 136021

10

very well

Comparison with other Drell-Yan data

The statistical model can also describe well the $\sigma(\pi^++Pt) / \sigma(\pi^-+Pt)$ Drell-Yan data, which were not included in the fit.

Comparison between proton and pion PDFs in the statistical model

$$xQ^{\pm}(x) = \frac{A_Q X_Q^{\pm} x^{b_Q}}{\exp[(x - X_Q^{\pm})/\bar{x}] + 1},$$

$$A_U = 0.776 \pm 0.15 \qquad b_U = 0.500 \pm 0.02$$

$$X_U = 0.756 \pm 0.01 \qquad \bar{x} = 0.1063 \pm 0.004$$

$$\tilde{A}_U = 2.089 \pm 0.21 \qquad \tilde{b}_U = 0.4577 \pm 0.009$$

$$A_G = 31.17 \pm 1.7 \qquad b_G = 1 + \tilde{b}_U.$$

The temperature, x
= 0.106, found for pion is very close to that obtained for proton, x
= 0.090, suggesting a common feature for the statistical model description of baryons and mesons
The chemical potential of the valence quark for pion, X_U = 0.756, is significantly larger than for proton, X_U = 0.39

Valence and gluon distributions for various pion PDFs

- Quite good agreements for valence quark PDFs
- Much larger
 variations for
 the gluon PDFs

Constraining gluon distribution of pion with pion-induced J/Ψ production

Chang, Platchkov, Sawada, JCP, PRD 102 (2020) 054024

- An attempt to compare existing pion PDFs in their abilities to describe existing pion-induced J/Ψ production data
- The existing data are sensitive to the gluon PDF in pion, which is poorly known and is of much theoretical interest

Comparison between data and calculations for different PDFs

- At the lowest beam energy (39.5 GeV), q \overline{q} annihilation dominates
- All PDFs are in good agreement with data, reflecting similar valence quark distributions

Comparison between data and calculations for different PDFs

- At the COMPASS beam energy (190 GeV), GG fusion dominates at x_F~0 for all PDFs
- At forward x_F , $q\bar{q}$ annihilation dominates
- JAM and xFitter GG fusion contribution falls off rapidly at large x_F

COMPASS++/AMBER (Phase-I was just approved)

• Expect new Drell-Yan and J/Ψ production data with pion beam in the near future !

Exclusive Drell-Yan and J/ Ψ production with pion beam

- Exclusive Drell-Yan with meson and antiproton beams are the time-like processes complementary to the deeply virtual meson production at JLab, HERMES and COMPASS
- Exclusive Drell-Yan with meson beam at J-PARC will also complement the program at FAIR using antiproton beam

Takahiro Sawada, Wen-Chen Chang, Shunzo Kumano, Jen-Chieh Peng, Shinya Sawada, Kazuhiro Tanaka, Phys. Rev. D93 (2016) 114034

DEMP versus exclusive Drell-Yan

Longitudinally polarized dilepton is expected

Evidence for longitudinally polarized dilepton in meson-induced Drell-Yan at large x?

As $x_{\pi} \rightarrow 1$, inclusive Drell-Yan becomes exclusive Drell-Yan!

Evidence for longitudinally polarized dilepton in meson-induced J/ Ψ at large x_F ?

 $\pi^- + W \rightarrow J / \Psi + X$ 252 GeV π^- PRL 58 (1987) 2523 $d\sigma$ $-\infty (1 + \lambda \cos^2 \theta)$ $d\Omega$ $\lambda = 1$: transversely polarized $\lambda = -1$: longitudinally polarized

As $x_F \rightarrow 1$, inclusive J/ Ψ becomes exclusive J/ Ψ !

J-PARC High-momentum Beam Line (can also provide secondary pion or kaon beam)

S. Sawada, Pacific Spin 2019

Exclusive Drell-Yan and J/Ψ measurement in J-PARC E50 Spectrometer

Summary and future prospect

- Meson parton distributions represent
 - * New territory for theory and experiment
 - * Unique opportunities at COMPASS, JLab, J-PARC, and EIC
- J/ψ production provides useful information on meson quark and gluon contents
 - * Existing data should be included in the global fits for constraining the gluon distribution in pion and kaon
 - * Analysis is underway to find possibly different gluon distributions in kaon and pion
- Exclusive J/ψ production with meson beam could provide information complementary to exclusive photo J/ψ production