Azimuthal asymmetries in unpolarised semi-inclusive DIS at COMPASS

Jan Matoušek
Charles University, Prague, Czechia
on behalf of the COMPASS collaboration

The 24th international spin symposium,
October 18–22, 2021, Matsue, Shimane prefecture, Japan
Outline

1. Introduction
2. Published measurements on 6LiD
3. New measurements on LH$_2$
4. Conclusion
Outline

1. Introduction

2. Published measurements on ^6LiD

3. New measurements on LH$_2$

4. Conclusion
Introduction: COMPASS

Collaboration: 24 institutes, 13 countries.
Fixed target, multi-purpose.
Broad research programme:
- **SIDIS**: μ^+ beam and L/T-polarised proton (NH_3) or deuteron (^6LiD) target (beam 160 GeV/c, 200 GeV/c in 2011)
- **Hadron spectroscopy**: hadron beams and nuclear targets.
- **Drell–Yan**: 190 GeV/c π^- beam and p^+, Al and W targets.
- **DVCS and SIDIS**: 160 GeV/c μ^\pm beam and liquid H_2 target.

It is located at M2 beamline of CERN’s SPS.

2016–2017 setup with CAMERA recoil proton detector and ECAL0 calorimeter for DVCS studies.
Introduction: Unpolarised SIDIS cross section

The cross section for producing a hadron h in DIS on unpolarised target $\ell N \rightarrow \ell' h X$:

\[\frac{d\sigma}{dxdydzd\phi_h dP_T^2} = \frac{2\pi\alpha^2}{xyQ^2} \left(\frac{y^2}{2(1 - \varepsilon)} \left(1 + \frac{2xM^2}{Q^2} \right) \left(F_{UU,T} + \varepsilon F_{UU,L} \right) \right. \\
\left. + \sqrt{2\varepsilon(1 + \varepsilon)} F_{UU}^{\cos \phi_h} \cos \phi_h + \varepsilon F_{UU}^{\cos 2\phi_h} \cos 2\phi_h + \lambda \sqrt{2\varepsilon(1 - \varepsilon)} F_{LU}^{\sin \phi_h} \sin \phi_h \right) \\
= \sigma_0 \left(1 + \varepsilon_1 A_{UU}^{\cos \phi_h} \cos \phi_h + \varepsilon_2 A_{UU}^{\cos 2\phi_h} \cos 2\phi_h + \lambda \varepsilon_3 A_{LU}^{\sin \phi_h} \sin \phi_h \right) \]

- where x, y, Q^2 are usual DIS variables,
- λ is the beam polarisation (≈ 0.8 at COMPASS),
- $\varepsilon \approx \frac{1-y}{1-y+\frac{1}{2}y^2}$, M nucleon mass,
- z is the fraction of γ^* energy carried by h.
- P_T is the transverse momentum of h in the γN frame, ϕ_h is its azimuthal angle.
- $F_{XU}^{f(\phi_h)}(x, z, P_T^2, Q^2)$ are structure functions.
- $A_{XU}^{f(\phi_h)}(x, z, P_T^2, Q^2)$ are commonly called azimuthal asymmetries.

SIDIS in the γ–nucleon frame.
Introduction: Unpolarised SIDIS cross section

The cross section for producing a hadron h in DIS on unpolarised target $\ell N \rightarrow \ell' hX$:

$$\frac{d\sigma}{dxdydzd\phi_h dP_T^2} = \frac{2\pi\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{2xM^2}{Q^2} \right) \left(F_{UU,T} + \varepsilon F_{UU,L} \right)
$$

$$+ \sqrt{2\varepsilon(1+\varepsilon)} F_{UU}^{\cos \phi_h} \cos \phi_h + \varepsilon F_{UU}^{\cos 2\phi_h} \cos 2\phi_h + \lambda \sqrt{2\varepsilon(1-\varepsilon)} F_{LU}^{\sin \phi_h} \sin \phi_h \right)
$$

$$= \sigma_0 \left(1 + \varepsilon_1 A_{UU}^{\cos \phi_h} \cos \phi_h + \varepsilon_2 A_{UU}^{\cos 2\phi_h} \cos 2\phi_h + \lambda \varepsilon_3 A_{LU}^{\sin \phi_h} \sin \phi_h \right)$$

- where x, y, Q^2 are usual DIS variables,
- λ is the beam polarisation (≈ 0.8 at COMPASS),
- $\varepsilon \approx \frac{1-y}{1-y+\frac{1}{2}y^2}$, M nucleon mass,
- z is the fraction of γ^* energy carried by h.
- P_T is the transverse momentum of h in the γN frame, ϕ_h is its azimuthal angle.
- $F^{f(\phi_h)}_{X U}(x, z, P_T^2, Q^2)$ are structure functions.
- $A^{f(\phi_h)}_{X U}(x, z, P_T^2, Q^2)$ are commonly called azimuthal asymmetries.
The structure functions in terms of TMD PDFs and TMD FFs, up to order $1/Q$

$$
F_{UU,T} = C \left[f_1 D_1 \right], \\
F_{UU,L} = 0, \quad \text{Cahn effect} \\
F_{UU}^{\cos \phi_h} = \frac{2M}{Q} C \left[-\frac{\hat{h} \cdot k_T}{M} f_1 D_1 - \frac{(\hat{h} \cdot p_\perp) k_T^2}{M M_h} h_1^\perp H_1^\perp + \ldots \right] \\
F_{UU}^{\cos 2\phi_h} = C \left[-\frac{2(\hat{h} \cdot k_T)(\hat{h} \cdot p_\perp) - k_T \cdot p_\perp h_1^\perp H_1^\perp}{M M_h} \right] \\
F_{LU}^{\sin \phi_h} = \frac{2M}{Q} C \left[\ldots \right]
$$

- $f_1(x, k_T^2, Q^2)$ unpolarised TMD PDF,
- $h_1^\perp(x, k_T^2, Q^2)$ Boer–Mulders function,
- $D_1(z, p_\perp^2, Q^2)$ unpolarised TMD FF,
- $H_1^\perp(z, p_\perp^2, Q^2)$ Collins function.
- $\hat{h} = P_T / P_T$,
- ... = other twist-three contributions.
- $C =$ sum over flavours and convolution over p_\perp, k_T,

$$
C[w f g] = x \sum q e_q^2 \int d^2 p_\perp d^2 k_T \delta(P_T - p_\perp - z k_T) f_q^q(x, k_T^2) g_q^q(z, p_\perp^2)
$$

Observables sensitive to k_T, p_\perp:
- azimuthal asymmetries $A_{UU}^{\cos \phi_h}, A_{UU}^{\cos 2\phi_h}, A_{LU}^{\sin \phi_h}$,
- k_T via Cahn effect,
- Boer–Mulders function.
- P_T-dependent distributions

$\propto F_{UU,T} = C[f_1 D_1]$.
→ talk of Anna Martin.
The structure functions in terms of TMD PDFs and TMD FFs, up to order $1/Q$:

$$F_{UU,T} = C \left[f_1 D_1 \right],$$

$$F_{UU,L} = 0,$$

$$F_{UU}^{\cos \phi_h} = \frac{2M}{Q} C \left[-\frac{\hat{h} \cdot k_T}{M} f_1 D_1 - \frac{(\hat{h} \cdot p_{\perp}) k_T^2}{M^2 M_h} h_1^\perp H_1^\perp + \ldots \right]$$

$$F_{UU}^{\cos 2\phi_h} = C \left[-\frac{2(\hat{h} \cdot k_T)(\hat{h} \cdot p_{\perp}) - k_T \cdot p_{\perp} h_1^\perp H_1^\perp}{MM_h} \right]$$

$$F_{LU}^{\sin \phi_h} = \frac{2M}{Q} C \left[\ldots \right]$$

- $f_1(x, k_T^2, Q^2)$ unpolarised TMD PDF,
- $h_1^\perp(x, k_T^2, Q^2)$ Boer–Mulders function,
- $D_1(z, p_{\perp}^2, Q^2)$ unpolarised TMD FF,
- $H_1^\perp(z, p_{\perp}^2, Q^2)$ Collins function.
- $\hat{h} = P_T/P_T$,
- $\ldots = \text{other twist-three contributions}$.
- $C = \text{sum over flavours and convolution over } p_{\perp}, k_T$,

$$C[wfg] = x \sum e_q^2 \int d^2 p_{\perp} d^2 k_T \delta(P_T - p_{\perp} - z k_T) f^q(x, k_T^2) g^q(z, p_{\perp}^2)$$

- Azimuthal asymmetries $A_{UU}^{\cos \phi_h}, A_{UU}^{\cos 2\phi_h}, A_{LU}^{\sin \phi_h}$,
- k_T via Cahn effect,
- Boer–Mulders function.

- P_T-dependent distributions $\propto F_{UU,T} = C[f_1 D_1]$.
- Talk of Anna Martin.
Published unpolarised SIDIS results:

- Azimuthal asymmetries on ^6LiD target [COMPASS, Nucl.Phys.B 886 (2014)].
- P_T-dependent multiplicities on ^6LiD target [COMPASS, Phys.Rev.D 97 (2018)].
- Background to the asymmetries from decays of exclusive diffractive vector mesons [COMPASS, Nucl.Phys.B 956 (2020)].

Ongoing analysis presented in this talk:

- 2016–2017 data taken with 2.5 m long LH$_2$ target.
- Primary goal: DVCS measurement, but useful for SIDIS as well.
- Advantages:
 - pure proton target,
 - alternating μ^\pm beam with balanced statistics (stability tests for systematics),
 - MC development in synergy with DVCS analysis.
- Part of the data (about 11%) used for preliminary results, released in 2020 and 2021.

Future:

- 2021–2022 runs with ^6LiD target (transversely polarised).
Published unpolarised SIDIS results:

- P_T-dependent multiplicities on 6LiD target [COMPASS, Phys.Rev.D 97 (2018)].
- Background to the asymmetries from decays of exclusive diffractive vector mesons [COMPASS, Nucl.Phys.B 956 (2020)].

Ongoing analysis presented in this talk:

- 2016–2017 data taken with 2.5 m long LH$_2$ target.
- Primary goal: DVCS measurement, but useful for SIDIS as well.
- Advantages:
 - pure proton target,
 - alternating μ^\pm beam with balanced statistics (stability tests for systematics),
 - MC development in synergy with DVCS analysis.
- Part of the data (about 11%) used for preliminary results, released in 2020 and 2021.

Future:

- 2021–2022 runs with 6LiD target (transversely polarised).
Published unpolarised SIDIS results:

- P_T-dependent multiplicities on 6LiD target [COMPASS, Phys.Rev.D 97 (2018)].
- Background to the asymmetries from decays of exclusive diffractive vector mesons [COMPASS, Nucl.Phys.B 956 (2020)].

Ongoing analysis presented in this talk:

- 2016–2017 data taken with 2.5 m long LH₂ target.
- Primary goal: DVCS measurement, but useful for SIDIS as well.
- Advantages:
 - pure proton target,
 - alternating μ^\pm beam with balanced statistics (stability tests for systematics),
 - MC development in synergy with DVCS analysis.
- Part of the data (about 11%) used for preliminary results, released in 2020 and 2021.

Future:

- 2021–2022 runs with 6LiD target (transversely polarised).
1 Introduction

2 Published measurements on 6LiD

3 New measurements on LH$_2$

4 Conclusion
Published measurements on 6LiD: Azimuthal asymmetries

- [COMPASS, Nucl.Phys.B 886 (2014)]
- Isoscalar target, effectively deuteron.
- Unidentified charged hadrons studied.
- **1D analysis**
 (bins in x, z and P_T separately).
- **3D analysis** (3D grid of bins).
- Strong kinematic dependence of the $\cos \phi_h$ and $\cos 2\phi_h$ asymmetries.
- At the time, some features were not understood (e.g. positive $A_{UU}^{\cos \phi_h}$)
- Exclusive diffractive vector meson contribution has been proved important later.
Published measurements on 6LiD: Azimuthal asymmetries

- [COMPASS, Nucl.Phys.B 886 (2014)]
- Isoscalar target, effectively deuteron.
- Unidentified charged hadrons studied.
- **1D analysis**
 (bins in x, z and P_T separately).
- **3D analysis** (3D grid of bins).
- Strong kinematic dependence of the $\cos \phi_h$ and $\cos 2\phi_h$ asymmetries.
- At the time, some features were not understood (e.g. positive $A_{UU}^{\cos \phi_h}$)
- Exclusive diffractive vector meson contribution has been proved important later.
Published measurements on 6LiD: Asymmetries and the EVMs

- The exclusive diffractive VMs inherit γ^* polarisation.
- The decay hadrons obtain large azimuthal modulations. Especially in $\cos\phi_h$.
- They were measured in the data selecting
 - only $\mu' h^+ h^-$,
 - $z_1 + z_2 > 0.95$.
- The contamination fraction from HEPGEN.
- Subtraction at the asymmetry level.

\[
\begin{align*}
\text{Diffractive } \rho^0 \text{ production.}
\end{align*}
\]

\[
\begin{align*}
\text{Total } z \text{ for } h^+ h^-.
\end{align*}
\]

\[
\begin{align*}
\phi_h - z \text{ correlation.}
\end{align*}
\]
Published measurements on ^6LiD: Asymmetries and the EVMs

- The exclusive diffractive VMs inherit γ^* polarisation.
- The decay hadrons obtain large azimuthal modulations. Especially in $\cos \phi_h$.
- They were measured in the data selecting
 - only $\mu' h^+ h^-$,
 - $z_1 + z_2 > 0.95$.
- The contamination fraction from HEPGEN.
- Subtraction at the asymmetry level.

The contamination fraction: $3D(P_T, z, x)$ representation.

A_{UU} vs $\cos \phi_h$ before (empty) and after (full) subtraction. $0.1 < P_T/(\text{GeV}/c) < 0.3$.

$\phi_h - z$ correlation.

Jan Matoušek (Charles University) Azimuthal asymmetries in unpol. SIDIS 18. 10. 2021, SPIN2021 10/22
Published measurements on 6LiD: Asymmetries and the EVMs

Outline

1 Introduction

2 Published measurements on 6LiD

3 New measurements on LH$_2$

4 Conclusion
New measurements on LH$_2$: Event selection and binning

experimental data

- **event selection**
 - HEPGEN MC
 - Monte Carlo (LEPTO or DJANGOH)

- **invisible exclusive VM decay subtraction**
 - DJANGOH MC

- **acceptance correction**
 - HEPGEN MC

- **radiative correction**
 - DJANGOH MC

- **azimuthal asymmetries**
 - PT-dependent distributions

The x and Q^2 range covered.

DIS event selection

- $Q^2 > 1$ (GeV/c)2,
- $W > 5$ GeV/c2,
- $0.003 < x < 0.13$,
- $0.2 < y < 0.9$,
- $\theta_\gamma < 60$ mrad,
- Exclusive VM decay cut: if only $\mu' h^+ h^-$ outgoing, $z_1 + z_2 = z_t < 0.95$.

Hadron selection

- $0.1 < z < 0.85$,
- $0.1 < P_T/(\text{GeV}/c) < 1.73$.

Jan Matoušek (Charles University) Azimuthal asymmetries in unpol. SIDIS 18. 10. 2021, SPIN2021
New measurements on LH$_2$: Event selection and binning

Experimental data

- **Event selection**
 - HEPPGEN MC
 - Monte Carlo (LEPTO or DJANGOH)

- **Invisible exclusive VM decay subtraction**
 - DJANGOH MC

- **Acceptance correction**

- **Radiative correction**

- **Azimuthal asymmetries**

- **PT-dependent distributions**

The x and Q^2 range covered.

DIS event selection

- $Q^2 > 1 (\text{GeV}/c)^2$,
- $W > 5 \text{ GeV}/c^2$,
- $0.003 < x < 0.13$,
- $0.2 < y < 0.9$,
- $\theta_\gamma < 60$ mrad,
- Exclusive VM decay cut: if only $\mu' h^+ h^-$ outgoing, $z_1 + z_2 = z_t < 0.95$.

Selected range with moderate acceptance corrections.

Hadron selection

- $0.1 < z < 0.85$,
- $0.1 < P_T/(\text{GeV}/c) < 1.73$.

[COMPASS, Nucl.Phys.B 956 (2020)]

Jan Matoušek (Charles University) Azimuthal asymmetries in unpol. SIDIS 18. 10. 2021, SPIN2021 13 / 22
New measurements on LH$_2$: Event selection and binning

Experimental data

- **Event selection**
 - HEPGEN MC
 - Monte Carlo (LEPTO or DJANGOH)

- **Invisible exclusive VM decay subtraction**
 - DJANGOH MC

- **Acceptance correction**
 - HEPGEN MC

- **Radiative correction**

- **Azimuthal asymmetries**

- **PT-dependent distributions**

DIS event selection

- $Q^2 > 1$ (GeV/c)2,
- $W > 5$ GeV/c2,
- $0.003 < x < 0.13$,
- $0.2 < y < 0.9$,
- $\theta_\gamma < 60$ mrad,
- Exclusive VM decay cut: if only $\mu' h^+ h^-$ outgoing, $z_1 + z_2 = z_t < 0.95$.

Selected range with moderate acceptance corrections.

Hadron selection

- $0.1 < z < 0.85$,
- $0.1 < P_T/(\text{GeV/c}) < 1.73$.

The x and Q^2 range covered.

[COMPASS, Nucl.Phys.B 956 (2020)]
New measurements on LH₂: Event selection and binning

experimental data

event selection

- HEPGEN MC
- Monte Carlo (LEPTO or DJANGOH)

invisible exclusive VM decay subtraction

acceptance correction

- HEPGEN MC
- DJANGOH MC

radiative correction

azimuthal asymmetries

PT-dependent distributions

\[Q^2 \text{ and } x \text{ bins for the } P_T\text{-dependent distributions.} \]

Binning

- Based on the published results.
- Asymmetries:
 - 1D in \(x, z \) and \(P_T \).
 - 3D in \(x, z \) and \(P_T \).
- \(P_T\)-dependent distributions
 - 4D in \(x, Q^2, z \) and \(P_T^2 \).
 - Larger bins w.r.t. the publication (2 bins in every variable merged).
New measurements on LH$_2$: Exclusive VM decay subtraction

- Different approach w.r.t published d asymmetries.
- ‘Visible’ exclusive h^+h^- removed in event selection.
 - About 80% of the decays are ‘visible’.
- ‘Invisible’ decays (only one h observed)
 - HEPGEN MC generator with azimuthal modulations.
 - Normalised to the data using E_{miss} distribution of the ‘visible’ decays.
 - Subtracted in every bin (including ϕ_h bins).

The number of signal events in the peak after SIDIS (from LEPTO) background subtraction is used to normalise HEPGEN.

![Graph showing event distribution](image)
New measurements on LH$_2$: Exclusive VM decay subtraction

The VM-contamination fraction.

The azimuthal modulations of hadrons from the ‘visible’ VM decays. The ‘invisible’ ones have very similar modulations.
New measurements on LH$_2$: Results for the asymmetries

- **Acceptance correction**
 - LEPTO generator, full Geant simulation of COMPASS.
 - QED radiative effects – not yet taken into account
 - Plan to use DJANGOH generator [DJANGO6] (→ evaluate impact on hadronic variables as well)

- **1D results**
 - Strong kinematic dependences, differences between h$^\pm$,
 - qualitative agreement with published deuteron results [COMPASS, Nucl.Phys.B 886 (2014)].

![Graphs showing azimuthal asymmetries](image)
New measurements on LH$_2$: Results for the asymmetries

Qualitative agreement with published deuteron results [COMPASS, Nucl. Phys. B 956 (2020)].

Jan Matoušek (Charles University) Azimuthal asymmetries in unpol. SIDIS 18. 10. 2021, SPIN2021
The Q^2-dependence of $\cos \phi_h$ modulation

- Cahn effect was expected to be the dominant contribution to $A_{UU}^{\cos \phi_h}$

$$F_{UU}^{\cos \phi_h} = \frac{2M}{Q} C \left[-\frac{\hat{h} \cdot k_T}{M} f_1 D_1 + \ldots \right]$$

- Assuming no flavour dependence,

$$A_{UU}^{\cos \phi_h} = -\frac{2z P_T \langle k_T^2 \rangle}{Q \langle P_T^2 \rangle}.$$

- Despite that, the asymmetry grows with Q^2.
- The difference between h^+ and h^- decreases with Q^2.

Rows are bins in Q^2.

COMPASS preliminary
The Q^2-dependence of $\cos \phi_h$ modulation

- Cahn effect was expected to be the dominant contribution to $A_{UU}^{\cos \phi_h}$

$$F_{UU}^{\cos \phi_h} = \frac{2M}{Q} C \left[-\hat{h} \cdot \frac{k_T}{M} f_1 D_1 + \ldots \right]$$

- Assuming no flavour dependence,

$$A_{UU}^{\cos \phi_h} = -\frac{2z P_T \langle k_T^2 \rangle}{Q \langle P_T^2 \rangle}.$$

- Despite that, the asymmetry grows with Q^2.
- The difference between h^+ and h^- decreases with Q^2.

Rows are bins in x.

COMPASS preliminary
New measurements on \(\text{LH}_2 \): Results for the asymmetries

The \(Q^2 \)-dependence of \(\cos 2\phi_h \) modulation

\[
F_{UU}^{\cos 2\phi_h} = C \left[-\frac{2 (\hat{h} \cdot k_T) (\hat{h} \cdot p_{\perp}) - k_T \cdot p_{\perp}}{MM_h} h_1^\perp H_1^\perp \right]
\]

- Here we do not see clear trends with \(Q^2 \).

Rows are bins in \(Q^2 \).
The Q^2-dependence of $\cos 2\phi_h$ modulation

$$F_{UU}^{\cos 2\phi_h} = C \left[-\frac{2(\hat{h} \cdot k_T)(\hat{h} \cdot p_\perp) - k_T \cdot p_\perp h_1^+ H_1^+}{M M_h} \right]$$

- Here we do not see clear trends with Q^2.

Rows are bins in x.

COMPASS preliminary

\[0.008 < x < 0.013\]

\[0.013 < x < 0.020\]

\[0.020 < x < 0.032\]

\[0.032 < x < 0.050\]

\[0.050 < x < 0.080\]

\[0.080 < x < 0.130\]
Outline

1 Introduction

2 Published measurements on 6LiD

3 New measurements on LH$_2$

4 Conclusion
Conclusion

Interesting observables in unpolarised SIDIS

- **Azimuthal asymmetries**: sensitive to k_T (via Cahn effect) and to the convolution of Boer–Mulders and Collins functions.

- **P_T-dependent distributions**: sensitive to k_T and p_\perp dependence of f_1 and D_1.
 → talk of Anna Martin.

- Contamination from decays of exclusive diffractive VMs plays an important role in both measurements.

COMPASS measurements

- **New preliminary results** (August 2020, March 2021) on liquid H_2 target.
 - 11% of the statistics,
 - More robust method for exclusive VM subtraction.
 - Alternating μ^\pm beam – systematic check.
 - Qualitative agreement with deuteron target data, rich kinematic dependences.
 - More results will come.

- **2021–2022 measurements** with (transversely polarised) ^6LiD target.

These measurements provide important input to general understanding of the transverse-momentum-dependent structure of the nucleon and of the fragmentation process.
Conclusion

Interesting observables in unpolarised SIDIS

- **Azimuthal asymmetries**: sensitive to k_T (via Cahn effect) and to the convolution of Boer–Mulders and Collins functions.
- **P_T-dependent distributions**: sensitive to k_T and p_\perp dependence of f_1 and D_1.
 \rightarrow talk of Anna Martin.
- Contamination from decays of exclusive diffractive VMs plays an important role in both measurements.

COMPASS measurements

- **Published results on 6LiD target**: [COMPASS, Nucl.Phys.B 886 (2014)],
- **New preliminary results** (August 2020, March 2021) on liquid H_2 target.
 - 11% of the statistics,
 - More robust method for exclusive VM subtraction.
 - Alternating μ^\pm beam – systematic check.
 - Qualitative agreement with deuteron target data, rich kinematic dependences.
 - More results will come.
- **2021–2022 measurements** with (transversely polarised) 6LiD target.

These measurements provide important input to general understanding of the transverse-momentum-dependent structure of the nucleon and of the fragmentation process.

Thank you for your attention!
Backup: Kinematic distributions

Normalised kinematic distributions: real data, LEPTO, HEPGEN ρ^0 and HEPGEN ϕ.
Back up: Comparison with the asymmetry measured on deuteron
Backup: Comparison with the asymmetry measured on deuteron

COMPASS preliminary