Recent results on light-meson exotics from the COMPASS experiment

Mikhail Mikhasenko on behalf of the COMPASS Collaboration

Excellence Cluster ORIGINS, Munich, Germany Joint Physics Analysis Center

July 27th, 2021

Variety of the hadronic states

QCD at low-energy regime:

- color interaction confined
- effective d.o.f. constituent quarks (gluons?)

Variety of the hadronic states

QCD at low-energy regime:

- color interaction confined
- effective d.o.f. constituent quarks (gluons?)

Ordinary matter:

charm

strange

b

bottom

Variety of the hadronic states

QCD at low-energy regime:

- color interaction confined
- effective d.o.f. constituent quarks (gluons?)

Ordinary matter:

meson

baryon

hadronic molecules

Exotic matter:

glueball

hybrid

tetraquark

- QED: hyperfine splitting
- QCD: is far not hyperfine

- QED: hyperfine splitting
- QCD: is far not hyperfine
- Example of spin-flip transition:

 $\rho(\uparrow\uparrow) \to \pi(\uparrow\downarrow)$ transition is a "QCD-cell division"

July 27th, 2021

The plan of the talk

- Introduction
 - Meson spectrum
 - Mass, width, pole position
 - Experimental setup
- ② Hybrid candidate $\pi_1(1600)$
 - $\pi_1(1600) \to \eta^{(\prime)}\pi$
 - $\pi_1(1600) \to 3\pi$
- 3 Tetraquark candidate $a_1(1420)$
 - Observation and interpretations
 - Triangle Singularity in three-body decays, interference
- Summary

Experimental situation on (non-strange) Light mesons

[B. Ketzer, B. Grube, D. Ryabchikov, PPNP, arXiv:1909.06366]

Experimental situation on (non-strange) Light mesons

[B. Ketzer, B. Grube, D. Ryabchikov, PPNP, arXiv:1909.06366]

Hadronic state is a particle

Hadronic state is a particle

- Hadronic states are resonances of the hadronic system
- Read m, Γ from spectrum

Hadronic state is a particle

- Hadronic states are resonances of the hadronic system
- Read m, Γ from spectrum

Hadronic state is a particle

- Hadronic states are resonances of the hadronic system
- Read m, Γ from spectrum
- resonances are poles of scattering amplitude.

Resonances are poles of the amplitude

Electric circuit

Scattering

$$A_{\pi\pi} = \frac{m\Gamma}{m^2 - s - im\Gamma}$$

Laboratory to study hadronic excitations

Laboratory to study hadronic excitations

Diffractive reaction

- Pion beam scattered off the proton target
- High energy guarantees t-channel process.
- The target provide the gluonic field
- 3π production has the largest cross section (inelastic)

Laboratory to study hadronic excitations

Diffractive reaction

- Pion beam scattered off the proton target
- High energy guarantees t-channel process.
- The target provide the gluonic field
- 3π production has the largest cross section (inelastic)

COMPASS Experiment

[NIM A779 (2015) 69-115]

Note on the history of $\pi_1(1600)$

a resonance with non- $q\bar{q}$ quantum numbers, $J^{PC}=1^{-+}$.

Two states in PDG: $\pi_1(1400)$ and $\pi_1(1600)$

- $\pi_1(1400) \to \eta \pi$
- $\pi_1(1600) \rightarrow \eta' \pi$ and $\rightarrow \rho \pi P$ -wave

Contradictions on $\pi_1(1600) \rightarrow \rho \pi P$ -wave (PWA)

• Four analyses in the past arrive to different conclusions on **existence** and parameters of $\pi_1(1600)$

Light-meson excitations from Lattice QCD

[Dudek et al., PRD 88, 094505 (2013)]

Light-meson excitations from Lattice QCD

[Dudek et al., PRD 88, 094505 (2013)]

Exotic mesons in two-body **scattering** on lattice

[A.Woss et al., PRD 103, 054502 (2021)]

Setup:

- SU(3): $m_{ij} = m_{d} = m_{s}$
- $m_{\pi} \approx 700 \, \text{MeV}$
- 8 coupled two-body channels
- Wide range of operators

- Strong coupling to $b_1\pi$
- Much smaller to $\rho\pi$, $f_1\pi$, $\eta^{(\prime)}\pi$
- Extrapolation width agrees with experimental analysis

$\pi_1(1600)$ hybrid candidate

as a resonance in $\eta^{(\prime)}\pi$ system

[COMPASS, PLB 740 (2015) 303]

- Exclusive reactions are selected
- $\bullet \ \eta \to \gamma \gamma, \ \eta' \to \pi^+ \pi^- \eta$

Angular analysis attributes the intensity to different $J^{PC}=1^{-+},\,2^{++},\,\dots$

July 27th, 2021

Combined analysis

[A.Rodas, A.Pilloni, MM, et al. (JPAC), PRL122 (2019) 4, 042002]

0.8 1.0 1.2 1.4 1.6 1.8

√s (GeV)

- Unitary analytic model: 2 poles for D-wave, and a single pole in P-wave
- Consistent description of the data in $\eta\pi$ and $\eta'\pi!$

Results: pole positions

[JPAC, PRL122 (2019) 4, 042002]

- A dominant systematic uncertainties is related to the model.
- More data, inclusion of $\rho\pi$, $f_1\pi$, and $b_1\pi$ will help to reduce the uncertainty

$\pi_1(1600)$ hybrid candidate

as a resonance in 3π system

Understanding of the 3π spectrum [COMPASS, PRD95 (2017) 032004]

The results of the main big fit

— 14 interfering waves \times 11 t'-slices simultaneously.

Understanding of the 3π spectrum [COMPASS, PRD95 (2017) 032004]

The results of the main big fit

— 14 interfering waves \times 11 t'-slices simultaneously.

Understanding of the 3π spectrum [COMPASS, PRD95 (2017) 032004]

The results of the main big fit

— 14 interfering waves \times 11 t'-slices simultaneously.

• 11 resonances are established including a new $a_1(1420)$

July 27th, 2021

Resonance model fit

The main mass-dependent fit

[COMPASS, PRD98 (2018) 092003]

Resonance model fit

The main mass-dependent fit

[COMPASS, PRD98 (2018) 092003]

Resonance model fit

The main mass-dependent fit

[COMPASS, PRD98 (2018) 092003]

Parameters of the $\pi_1(1600)$ in 3π

[COMPASS, PRD98 (2018) 092003]

 $\rho\pi$ *P*-wave from the 14-waves fit.

- Background changes with virtuality of \mathbb{P} (t')
- The resonance mass and width are constrained to be the same for all t'

$$m(\pi_1) = 1550^{+110}_{-60} \text{ (syst.) MeV}, \quad \Gamma(\pi_1) = 580^{+100}_{-230} \text{ (syst.) MeV}$$

Consistent with measurements in $\eta'\pi$

July 27th, 2021

Parameters of the $\pi_1(1600)$ in 3π

[COMPASS, PRD98 (2018) 092003]

 $\rho\pi$ *P*-wave from the 14-waves fit.

- ullet Background changes with virtuality of ${\mathbb P}$ (t')
- The resonance mass and width are constrained to be the same for all t'

$$m(\pi_1) = 1550^{+110}_{-60} \text{ (syst.) MeV}, \quad \Gamma(\pi_1) = 580^{+100}_{-230} \text{ (syst.) MeV}$$

Consistent with measurements in $\eta'\pi$

 $\rho\pi$ *P*-wave from the 14-waves fit.

- ullet Background changes with virtuality of ${\mathbb P}$ (t')
- The resonance mass and width are constrained to be the same for all t'

$$m(\pi_1) = 1550^{+110}_{-60} \text{ (syst.) MeV}, \quad \Gamma(\pi_1) = 580^{+100}_{-230} \text{ (syst.) MeV}$$

Consistent with measurements in $\eta'\pi$

 $\rho\pi$ *P*-wave from the 14-waves fit.

- ullet Background changes with virtuality of ${\mathbb P}$ (t')
- The resonance mass and width are constrained to be the same for all t'

$$m(\pi_1) = 1550^{+110}_{-60} \text{ (syst.) MeV}, \quad \Gamma(\pi_1) = 580^{+100}_{-230} \text{ (syst.) MeV}$$

Consistent with measurements in $\eta'\pi$

Wave set and consistency with previous results

Two reasons of troubles with $\rho\pi$ P-wave [COMPASS, to appear on arxiv]

Two effects:

• Wave set: leakage to $\rho\pi P$ -wave

Wave set and consistency with previous results

Two reasons of troubles with $\rho\pi$ P-wave [COMPASS, to appear on arxiv]

Two effects:

- Wave set: leakage to $\rho\pi$ *P*-wave
- Non-resonant background depends on t' (Deck [PRL 13 (1964) 169-173])

Wrap up on $\pi_1(1600)$

- Analysis of $\eta^{(\prime)}\pi$:
 - ► [COMPASS, PLB 740 (2015) 303]
 - ► [JPAC/COMPASS, PLB 779, 464-472]
 - ► [JPAC, PRL122 (2019) 4, 042002]

establish $\pi_1(1400)/\pi_1(1600)$ is the same resonance with

$$\eta^{(\prime)}\pi: \quad m_{\text{pole}}(\pi_1) = 1567 \pm 24 \pm 86 \,\mathrm{MeV} \quad \Gamma_{\text{pole}}(\pi_1) = 492 \pm 54 \pm 102 \,\mathrm{MeV}$$

- Analysis of 3π :
 - [COMPASS, PRD95 (2017) 032004]
 - ► [COMPASS, PRD98 (2018) 092003]
 - ► [COMPASS, to appear on arxiv]

solved the long-standing puzzle on inconsistency of past analyses

$$3\pi: \quad m_{\text{pole}}(\pi_1) = 1630^{+110}_{-60}(\text{syst}) \,\mathrm{MeV} \quad \Gamma_{\text{pole}}(\pi_1) = 570^{+100}_{-230}(\text{syst}) \,\mathrm{MeV}$$

 $\Rightarrow \pi_1(1600)$ is lightest meson with exotic quantum numbers $J^{PC}=1^{-+}$

20 / 32

$a_1(1420)$ tetraquark candidate

as a resonance in the 3π system

Observation of the $a_1(1420)$

[COMPASS, PRL 115 (2015) 082001]

Observation of the $a_1(1420)$

[COMPASS, PRL 115 (2015) 082001]

Observation of the $a_1(1420)$

[COMPASS, PRL 115 (2015) 082001]

New particle may be made of four quarks

Not something ordinary

- Too close to the ground state $a_1(1260)$
- Its width is narrower than the ground state
- Close to threshold $K^*\bar{K}$, i.e. $(d\bar{s}) + (\bar{u}s)$, $E_{\rm th} = 1.39 \, {\rm GeV}.$

Possible scenaria

• Pole in the amplitude - Genuine resonance

• Singularity of the non-pole type

Possible scenaria

- Pole in the amplitude Genuine resonance
 - ► Tetraquark state [Z.-G. Wang (2014)], [H.-X.Chen et al. (2015)], [T. Gutsche et al. (2017)]
 - $ightharpoonup K^*\bar{K}$ molecule [T. Gutsche et al. (2017)]
- Singularity of the non-pole type

22 / 32

Possible scenaria

- Pole in the amplitude Genuine resonance
 - ► Tetraquark state [Z.-G. Wang (2014)], [H.-X.Chen et al. (2015)], [T. Gutsche et al. (2017)]
 - $ightharpoonup K^*\bar{K}$ molecule [T. Gutsche et al. (2017)]
- Singularity of the **non-pole** type
 - ▶ Interference with background interplay between distant cuts

 $[J.-L.\ Basdevant,\ Ed.\ Berger,\ PRL114\ (2015)\ no.19,\ 192001]$

Possible scenaria

- Pole in the amplitude Genuine resonance
 - ► Tetraquark state [Z.-G. Wang (2014)], [H.-X.Chen et al. (2015)], [T. Gutsche et al. (2017)]
 - $ightharpoonup K^* \bar{K}$ molecule [T. Gutsche et al. (2017)]
- Singularity of the non-pole type
 - Interference with background interplay between distant cuts
 - **Rescattering** from $K^*\bar{K}$ Triangle singularity

[MM, A. Sarantsev, B. Ketzer, PRD 91, 094015 (2015)], confirmed by [Aceti et al, PRD 94, 096015 (2016)]

Possible scenaria

- Pole in the amplitude Genuine resonance
 - Tetraquark state [Z.-G. Wang (2014)], [H.-X.Chen et al. (2015)], [T. Gutsche et al. (2017)]
 - $ightharpoonup K^*\bar{K}$ molecule [T. Gutsche et al. (2017)]
- Singularity of the non-pole type
 - ▶ Interference with background interplay between distant cuts
 - ▶ **Rescattering** from $K^*\bar{K}$ Triangle singularity

[MM, A. Sarantsev, B. Ketzer, PRD 91, 094015 (2015)], confirmed by [Aceti et al, PRD 94, 096015 (2016)]

- The relaxation via an intermediate meson
- Direct emission of ρ -meson
- \Rightarrow resonances in $(\pi\pi)$ spectrum

23 / 32

- The relaxation via an intermediate meson
- Direct emission of ρ -meson
- resonances in $(\pi\pi)$ spectrum

- The relaxation via an intermediate meson
- Direct emission of ρ -meson
- resonances in $(\pi\pi)$ spectrum

- The relaxation via an intermediate meson
- Direct emission of ρ -meson
- resonances in $(\pi\pi)$ spectrum

Hadronic double-slit experiment

- Several quantum processes lead to the same outcome
- Intermediate states are entangled

Hadronic double-slit experiment

- Several quantum processes lead to the same outcome
- Intermediate states are entangled
- Non-perturbative process an infinite number of barriers
- Cross-channel effect scales with the resonance width

Hadronic double-slit experiment

- Several quantum processes lead to the same outcome
- Intermediate states are entangled
- Non-perturbative process an infinite number of barriers
- Cross-channel effect scales with the resonance width

24 / 32

Coupled channels (schematically)

- $K\bar{K}\pi$ is a possible decay of the same resonance a_1
- Two separated problems?

Coupled channels (schematically)

- $K\bar{K}\pi$ is a possible decay of the same resonance a_1
- Two separated problems? No, more entangled states (coupled channels)!
- Hadron interaction mixes probabilities

Coupled channels (schematically)

- $K\bar{K}\pi$ is a possible decay of the same resonance a_1
- Two separated problems? No, more entangled states (coupled channels)!
- Hadron interaction mixes probabilities
- Tiny fraction of the $a_1 \to K\bar{K}\pi$ probability gets into $\pi\pi\pi$,
- However, only above $K^*\bar{K}$ threshold!

The key effect - the triangle rescattering graph

- f_0 is a resonance in $(K\bar{K})$ and also in $(\pi\pi)$ system.
- ullet Ordinary a_1 decays to $Kar K\pi$ via $K^*ar K$
- $K\bar{K}$ form f_0 that decays to $\pi\pi$

The key effect - the triangle rescattering graph

- f_0 is a resonance in $(K\bar{K})$ and also in $(\pi\pi)$ system.
- Ordinary a_1 decays to $K\bar{K}\pi$ via $K^*\bar{K}$
- $K\bar{K}$ form f_0 that decays to $\pi\pi$

- has a logarithmic singularity (divergence at a single point)
- $A \sim \log(s_0 m_{3\pi}^2)$ with s_0 determined by masses of involved particles.

26 / 32

The key effect - the triangle rescattering graph

- f_0 is a resonance in $(K\bar{K})$ and also in $(\pi\pi)$ system.
- Ordinary a_1 decays to $K\bar{K}\pi$ via $K^*\bar{K}$
- $K\bar{K}$ form f_0 that decays to $\pi\pi$

- has a logarithmic singularity (divergence at a single point)
- $A \sim \log(s_0 m_{3\pi}^2)$ with s_0 determined by masses of involved particles.

Fit with the rescattering model [COMPASS, PRL(2021)]

Fit perfectly describes the intensity and the phase motion

- No shape parameters for the signal component (TS)
- Background with constant phase is needed to shift the amplitude
- TS model shows a comparable quality to the resonance model (BW-model)

27 / 32

Systematic studies

TS model systematically yields a similar \mathcal{R}^2_{red} as the BW model.

- Neglecting interference of the conjugated decay chains,
- Neglecting the spins of the particles involved,
- Including the excitations $a_1(1640)$ and $a_2(1700)$
- Varying mass and width of the K^* resonance

Emerging interpretation [COMPASS, PRL (2021)]

Emerging interpretation [COMPASS, PRL (2021)]

- a₁(1420) signal can be described with a₁(1260) as source for the rescattering via the triangle diagram ⇒ the first clear observation of the TS
- An additional pole is not needed, although, not excluded

Summary on $a_1(1420)$

- Peak and phase motion are not unique sign of a resonance!
- $a_1(1420)$ signal can be described with ordinary a_1 as source for the rescattering via the triangle diagram
- Old theoretical concept, but clearly observed for the first time!
- ullet Intensity of signal $\sim 1\%$, in agreement with experiment

Signal in $f_0\pi P$ -wave \Rightarrow established Triangle Singularity, no need for the tetraquark

Conclusions and outlook

- Hadron spectroscopy is a unique tool for understanding the QCD, the theory of matter formation
- **Diffractive** reaction is a clean setup for measurements of the excitation spectrum
- COMPASS leads the effort of large combined light-quark meson studies
- Many new surprises with new data (GlueX, BESIII, AMBER(?))
- Lattice QCD already provides quantities accessible at COMPASS, we should catch up
- Strengthen the TH+EXP collaboration

Conclusions and outlook

- Hadron spectroscopy is a unique tool for understanding the QCD, the theory of matter formation
- **Diffractive** reaction is a clean setup for measurements of the excitation spectrum
- COMPASS leads the effort of large combined light-quark meson studies
- Many new surprises with new data (GlueX, BESIII, AMBER(?))
- Lattice QCD already provides quantities accessible at COMPASS, we should catch up
- Strengthen the TH+EXP collaboration

Outlook for hadron spectroscopy at COMPASS

- ullet $\pi_1(1600) o b_1\pi$ and $\pi_1(1600) o f_1\pi$ are under study in COMPASS
- Kaon diffraction reaction $K^- p \to K^- \pi^+ \pi^- p$ is under study The first results are coming soon
- Extensive kaon spectroscopy program with AMBER at CERN is proposed

Thank you for the attention

Interfering background

The high-energy exchange processes penetrate to the low energy and make resonance characterization difficult

Classical picture of near-mass-shell rescattering

Imagine cascade reaction $a_1(1260) \to K^*(892)\bar{K}$, then $K^* \to K\pi$, and calculate invariant mass of K and \bar{K} for the case when K is parallel to \bar{K} .

Partial form of Landau conditions [[Nucl. Phys. 13, 181 (1959)]]:

- All particles in loop are on mass shell.
- The alignment of moments $\vec{p}_K \uparrow \uparrow \vec{p}_{\bar{K}}$.
- K is faster then \bar{K} .