

Probing the pion's parton structure with AMBER (Phase-1 experiments)

Stephane Platchkov, Apr. 27, 2021

(On behalf of the AMBER collaboration)

Physics potential of AMBER – Phase 1 ("DY" = Dimuon production)

- ◆ Three main advantages of CERN + COMPASS:
 - 1) mesons beams (Amber phase-1: pions, later: kaons)
 - 2) both positive and negative very important!
 - 3) Large and uniform acceptance spectrometer

Only place in the world!

- ◆ Three main physics goals of AMBER phase-1:
 - 1) Separate valence and sea pion PDFs
 - lacksquare 2) Access gluon distribution in the pion using J/ ψ and ψ ' production and
 - 3) Study the flavor dependence of the nuclear mean field

Fall 2020: official approval by SPSC!

Goal #1:

Separate valence and sea contributions in the pion

Properties of the lightest mesons (pion and kaon)

- ◆ Light meson properties
 - How the (simplest) light mesons compare to the nucleon?

M (MeV):

Rch (fm): 0.841(2)

938

0.659(4)

135

493 0.560(31)

- ◆ Help understanding the emergence of hadron masses
 - Higgs mechanism can't explain hadron masses
 - EHM: explain the heavy nucleon and the light pion

► Meson PDFs: Important input

Present status of pion PDFs (global fits \simeq experiment)

Chang, Peng, SP, Sawada. PRD 102, 054024 (2020).

Valence: must be checked and improved. Sea and gluons: nearly unknown

Pion PDFs (very recent progress...)

N. Cao, P. Barry, N. Sato, and W. Melnitchouk, arXiv:2103.02159 (2021).

global fit (JAM21)

First multidimensional global fit by JAM21 (March 2021)

Z. Fan and H-W. Lin, arXiv:2104.06372 (2021).

gluons

First pion glue lattice QCD calculation (April 2021)

Pion sea/valence: the only available results (NA3, 1983)

- Only measurement: NA3 (π^-/π^+ on a ¹⁹⁵Pt target)
 - π -: 200 GeV (4.7k)
 - π +: 200 GeV (1.7k)
 - ► Insufficient statistics!

- Requirements for a new measurement
 - Beams of π and π +
 - Good control of $\sigma(abs)$ normalization
 - Statistics: ≥ order of magnitude!

Badier et al., Z.Phys. C18, 281 (1983).

Fig. 1. a π^- 200 GeV data. The data points represent $F_{\pi}(x_1)$ as defined b curve represents the valence structure function of the pion obtained from function as defined by (2). b The data points represent $F_{\pi}(x_2)$ as defined structure function $1.6u(x_2) + 2.4d(x_2)$ for π^- . Solid curve represent the (v curves have been scaled up by a factor K = 2.3

Table 4. Result of the fit of the pion valence structure function with the data at $\langle M_{\mu\mu}^2 \rangle = 25 \text{ GeV}^2$. The π sea and nucleon valence and sea structure

ients ——	_
pion s	ea
_	pion s

The available π^+ statistics will be increased to $\geq 20~000$

 ± 0.03

Drell-Yan: available data and expected statistics

Table 7: Statistics collected by earlier experiments (top rows), compared with the achievable statistics of the proposed experiment (bottom rows), in 213 days (π^+ beam) + 67 days (π^- beam).

Experiment	Target type	Beam energy (GeV)	Beam type	Beam intensity (part/sec)	DY mass (GeV/c ²)	DY events
E615	20 cm W	252	$\pi^+\atop \pi^-$	17.6×10^7 18.6×10^7	4.05 – 8.55	5000 30000
NA3	30 cm H ₂	200	$\pi^+\atop \pi^-$	2.0×10^{7} 3.0×10^{7}	4.1 – 8.5	40 121
	6 cm Pt	200	$\pi^+\atop \pi^-$	2.0×10^{7} 3.0×10^{7}	4.2 – 8.5	1767 4961
	120 cm D ₂	286 140	π^-	65 × 10 ⁷	4.2 - 8.5 4.35 - 8.5	7800 3200
NA10	12 cm W	286 194 140	π^-	65×10^7	4.2 - 8.5 $4.07 - 8.5$ $4.35 - 8.5$	49600 155000 29300
COMPASS 2015 COMPASS 2018	110 cm NH ₃	190	π^-	7.0×10^7	4.3 – 8.5	35000 52000
This exp	75 cm C	190	π^+	1.7×10^7	4.3 – 8.5 4.0 – 8.5	21700 31000
		190	π^-	6.8×10^7	4.3 - 8.5 $4.0 - 8.5$	67000 91100
	12 cm W	190	π^+	0.4×10^7	4.3 – 8.5 4.0 – 8.5	8300 11700
	12 cm vv	190	π^-	1.6×10^7	4.3 – 8.5 4.0 – 8.5	24100 32100

Amber advantages

 \checkmark ¹²C (3 x 25 cm) target

- control reinteraction

- ✓ Improvement in statistics:
 - $\pi : x 19$
 - $\pi + : x 18$

Expected results, emphasizing valence/sea separation

$$S_{sea}^{pD} = 4S^{p^{+}D} - S^{p^{-}D}$$
$$S_{val}^{pD} = -S^{p^{+}D} + S^{p^{-}D}$$

$$S_{val}^{\rho D} = -S^{\rho^+ D} + S^{\rho^- D}$$

no valence

only valence

Goal #2:

Access the gluons in the pion using charmonium production

Charmonium production: pros and cons

- Extremely attractive observable, linked to the gluon distribution
 - J/ψ has large cross sections: factor of 30-50 larger than Drell-Yan
 - AMBER will measure x_F , p_T , λ distributions with huge statistics (> 1 M events)
 - Fixed target energies: production is dominated by 2 --> 1 process
 - AMBER@CERN: simultaneous measurements of (π^+ and p) and π^-
 - No new FT data since two decades!

♦ However!

- The J/ ψ production mechanism is not well known
- Fixed-target energies: $p_T \leq M(J/\psi)$; for LHC $p_T >> M(J/\psi)$;
 - Additional effects may contribute

π + ¹²C cross section for two PDF "global" fits (CEM at LO)

GRV(1992) vs JAM(2018) pion PDFs

The two global fits provide different PDFs: valence, gluon, sea

NLO CEM calculation for a H₂ target (NA3)

- NLO CEM calculation for J/ψ cross section
 - pion beam, E = 200 GeV
 - Target = Hydrogen
- ♦ 4 different pion PDFs:
 - SMRS, GRV, xFitter, JAM

Result: very different magnitudes of the $q\bar{q}$ and gg contributions

14

Polarization

- J/ ψ is a 1⁻⁻ particle; its third component is J_z = 0,+1, -1.
 - α = +1 : 100% transverse polarization (J_z = ± 1)
 - $\alpha = 0$: unpolarized
 - $\alpha = -1$: 100% longitudinal polarization ($J_z = 0$)

$$\frac{d\sigma}{d(\cos\theta)} \propto 1 + \alpha \cos^2\theta,$$

- Polarization is a fundamental observable
 - angular momentum, chirality, parity conservations preserve the properties of the J/ψ : from production to the 2μ decay

EHM-V, April 2021

- Nature wants to help us, for $q\bar{q}$: $\alpha \simeq +1$, but for gg: $\alpha \simeq -1$
- Key variable for understanding the bound state formation

- ICEM xF-dependent predictions
 - with minimal model-dependence

$$\lambda_{\vartheta}^{CS} \approx +0.4 \text{ for } q \overline{q}$$
 $\lambda_{\vartheta}^{CS} \approx -0.6 \text{ for } gg$

■ The difference between the two predictions results from the different amount of $q\bar{q}$ and gg contributions as a function of x_F .

The polarization value as a function of x_F is sensitive to the shape differences between gg and $q\bar{q}$ contributions to the cross section

J/ψ measurements at COMPASS++/AMBER

Multidimensional analysis of both cross section and dilepton decay angles should provide constraint on the gg and $q\bar{q}$ fractions

Estimated J/ψ statistics

75 cm C

12 cm W

Experiment	Target type	Beam energy (GeV)	Beam type	J/ψ events
		150	π_	601000
NA3 [76]	Pt	280	π^-	511000
1015 [70]	1.0	200 π		131000
		200	π^-	105000
	Cu			200000
E789 [127, 128]	Au	800	р	110000
	Be		_	45000
E866 [129]	Be			
	Fe	800	р	3000000
	Cu		_	
	Be			124700
NA50 [130]	Al			100700
	Cu	450	p	130600
	Ag			132100
	W			78100
N/A 51 [121]	р	450	р	301000
NA51 [131]	d			312000
HERA-B [132]	C	920	p	152000
			π+	1200000

190

190

C	om	m	en	te

Cross sections not published, only plots available

 x_F and p_T cross sections available

Only ratios of cross sections available

Only A-dependent studies of total cross sections

Only A-dependent studies of total cross sections x_F and p_T cross sections available

. . .

1800000 1500000

500000

700000 700000 Estimations based on Compass preliminary numbers

This exp

ψ ' production

◆ Pros

- No feed-down contributions. Consequences:
 - $q\bar{q}$ and gg contributions could reach their maximum polarization values
- Measure: x_F and p_T distributions + polarization
- AMBER could provide the largest ψ ' data set ever.

- Cons
 - Lower cross section (~1/7) smaller BR (~1/8):
 - Ratio $(\psi'/J/\psi) \simeq 0.018$!

 $J^{PC} = 0^{-+}$ 1^{--} 0^{++} 1^{++} 2^{++}

Requirements: Good mass resolution (≤ 100 MeV) – need vertex detectors and/or dedicated runs without absorber (AMBER II)

ψ ' production – expected statistics

◆ AMBER – 6 complementary measurements!

Target	Energy	Beam	Nb of ψ '
¹² C	190 GeV	π^+	21 600
		π^-	32 400
		p	27 000
184 W		π^+	9 000
		π^-	12 600
		р	12 600

Improved statistics on two targets and with three different beams

Gribushin et al., PRD 53,4723 (1996)

Goal #3:

Flavor dependence of the EMC effect

EMC effect – a longstanding nuclear physics issue

1982

Deep in the nucleus: a puzzle revisited

NULL IN THE PROPERTY OF THE PROPERTY

"Thirty years ago, high-energy muons at CERN revealed the first hints of an effect that puzzles experimentalists and theorists alike to this day."

REVIEWS OF MODERN PHYSICS, VOLUME 89, OCTOBER-DECEMBER 2017

Nucleon-nucleon correlations, short-lived excitations, and the quarks within

O. Hen, G. Miller, E. Piasetzky, L. Weinstein

How can AMBER contribute ("for free")?

Flavor-dependence of the EMC effect

◆ Cloët, Benz and Thomas (2009):

Cloët, Bentz and Thomas, PRL 102, 252301 (2009)

- use nuclear matter within a covariant Nambu—Jona-Lasinio model
- Compute the flavour-dependence of the nuclear PDFs
 - "...for $N \neq Z$ nuclei, the u and d quarks have distinct nuclear modifications."

- ◆ Isovector-vector mean-field force
 - Appears in nuclei with $N \neq Z$
 - u quarks feel additional attraction,
 d quarks feel additional repulsion

Can be accessed ONLY through parity-violating DIS (JLAB) or with AMBER@CERN

AMBER – expected results

$$\frac{\sigma_W^{\pi-} - \sigma_W^{\pi+}}{\sigma_C^{\pi-} - \sigma_C^{\pi+}}$$

LO/NLO: minimal effect

Summary

- \bullet Map out the pion parton structure at large x, x > 0.1
 - 1) DY data: separate valence and sea distributions in the pion
 - 2) J/ ψ and ψ ' data : study pion-induced production infer pion valence and gluon distributions
 - ► AMBER@CERN is unique for these meson PDFs measurements
- ◆ Nuclear dependence at large x
 - Improve our knowledge of the EMC effect first look at the flavor dependence of the nuclear mean field
 - ► AMBER@CERN is unique for this nuclear stricture measurement

These three fundamental measurements will be achieved using the same data set

EHM-V, April 2021