

Brian Ventura, on behalf of the COMPASS collaboration

Exclusive single photon muonproduction at COMPASS

adapted from physics.aps.com

DIS 2021, April 15th

Outline

- Deeply Virtual Compton Scattering (DVCS)
- The COMPASS experiment at CERN
- The 2012 pilot run and 2016-17 run
- Summary and outlook

Deeply Virtual Compton Scattering (DVCS)

Deeply Virtual Compton Scattering (DVCS)

D. Mueller *et al*, Fortsch. Phys. 42 (1994) X.D. Ji, PRL 78 (1997), PRD 55 (1997) A. V. Radyushkin, PLB 385 (1996), PRD 56 (1997)

x: average longitudinal momentum

- $\boldsymbol{\xi}:$ longitudinal momentum difference
- t: four-momentum transfer related to b_{\perp} via Fourier transform

Variables measured in an experiment:

$$E_{\ell}, Q^{2}, x_{B} \sim 2\xi / (1+\xi),$$

t (or $\theta_{\gamma^{*}\gamma}$)
 ϕ ($\ell\ell'$ plane/ $\gamma\gamma^{*}$ plane)
 $\mathcal{H} = \int_{-1}^{+1} dx \ \frac{H(x,\xi,t)}{x-\xi+i\varepsilon}$

Deeply Virtual Compton Scattering (DVCS)

D. Mueller *et al*, Fortsch. Phys. 42 (1994) X.D. Ji, PRL 78 (1997), PRD 55 (1997) A. V. Radyushkin, PLB 385 (1996), PRD 56 (1997)

- x: average longitudinal momentum
- $\boldsymbol{\xi}:$ longitudinal momentum difference
- t: four-momentum transfer
 - related to $\boldsymbol{b}_{\!\scriptscriptstyle \perp}$ via Fourier transform

- DVCS is the golden channel to experimentally access GPDs
- Its interference with the Bethe-Heitler process gives access to more info

The COMPASS experiment at CERN

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

The COMPASS experiment at CERN

Protons detected in CAMERA: L = 4m; $\emptyset = 2m$ 24 inner & outer scintillators separated by about 1m 1 GHz SADC readout, 330ps ToF resolution

DVCS > BH

BH normalisation based on integrated luminosity MC: -

 π° background contribution from inclusive and exclusive production

COMPASS

PLB793

(2019)

1000

194

COMPASS 2012 Pilot run results

At COMPASS using polarized positive and negative muon beams:

$$S_{CS,U} \equiv d\sigma \stackrel{+}{\leftarrow} + d\sigma \stackrel{-}{\rightarrow} = 2[d\sigma^{BH} + d\sigma^{DVCS}_{unpol} + Im I]$$

= $2[d\sigma^{BH} + c_0^{DVCS} + c_1^{DVCS} \cos \phi + c_2^{DVCS} \cos 2\phi + s_1^I \sin \phi + s_2^I \sin 2\phi]$

calculable All the other terms are cancelled in the integration over ϕ can be subtracted

$$\frac{\mathrm{d}^3 \sigma_{\mathrm{T}}^{\mu p}}{\mathrm{d}Q^2 \mathrm{d}\nu dt} = \int_{-\pi}^{\pi} \mathrm{d}\phi \, \left(\mathrm{d}\sigma - \mathrm{d}\sigma^{BH}\right) \propto c_0^{DVCS}$$

$$d\sigma^{DVCS}/dt = e^{-B|t|} = c_0^{DVCS}$$

COMPASS 2012 Pilot run results

COMPASS 2012 Pilot run results

2 × 2012 statistics 22% of 2016-17 statistics

 $\Delta \phi = \phi^{\text{cam.}} - \phi^{\text{spec.}}$

 $\Delta p_{\rm T} = |p_{\rm T}^{\rm cam.}| - |p_{\rm T}^{\rm spec.}|$

 $\Delta z_A = z_A^{\text{cam.}} - z_A^{\text{spec.}}$

 $M^{2}_{undet} = (k + p - k' - q' - p')^{2}$

-10

0.025 rad

Entries / 1

0.4

0.2

Entries / cm

600

500 F

400

300

200

100

2 × 2012 statistics 22% of 2016-17 statistics

 $\Delta \phi = \phi^{\text{cam.}} \text{ - } \phi^{\text{spec.}}$

 $\Delta p_{\mathrm{T}} = |p_{\mathrm{T}}^{\mathrm{cam.}}|$ - $|p_{\mathrm{T}}^{\mathrm{spec.}}|$

 $\Delta z_A = z_A^{\text{cam.}} - z_A^{\text{spec.}}$

$$M^{2}_{undet} = (k + p - k' - q' - p')^{2}$$

Good agreement between μ^{\ddagger} and μ^{\ddagger} yields Important achievement for:

$$\mathcal{D}_{cs,u} \equiv d\sigma \stackrel{+}{\leftarrow} - d\sigma \stackrel{-}{\rightarrow}$$
Challenging
$$\mathcal{S}_{cs,u} \equiv d\sigma \stackrel{+}{\leftarrow} + d\sigma \stackrel{-}{\rightarrow}$$
Easier, done first

10

15

 ΔZ_A [cm]

-10

BH domain 0.005 < x_B < 0.01 or 80 GeV < ע < 144 GeV

 $\Delta p_{T} = |p_{T}^{cam.}| - |p_{T}^{spec}|$

 $\Delta \phi = \phi^{\text{cam.}}$ - $\phi^{\text{spec.}}$

 $\Delta p_{\mathrm{T}} = |p_{\mathrm{T}}^{\mathrm{cam.}}|$ - $|p_{\mathrm{T}}^{\mathrm{spec.}}|$

 $\Delta z_A = z_A^{\text{cam.}} - z_A^{\text{spec.}}$

$$M^{2}_{undet} = (k + p - k' - q' - p')^{2}$$

Good agreement between μ^{\ddagger} and μ^{\ddagger} yields Important achievement for:

$$\mathcal{D}_{cs,u} \equiv d\sigma \stackrel{+}{\leftarrow} - d\sigma \stackrel{-}{\rightarrow}$$
Challenging
$$\mathcal{S}_{cs,u} \equiv d\sigma \stackrel{+}{\leftarrow} + d\sigma \stackrel{-}{\rightarrow}$$
Easier, done first

-10

-5

10

 $\Delta Z_A [cm]$

0.2

 π^0 are one of the main background sources for exclusive photon events

Two possible cases:

Visible (both γ detected) \rightarrow subtracted the DVCS photon after exclusivity cuts is combined with all detected photons below the DVCS threshold: 4,5 GeV in Ecal0,1 respectively

```
Invisible (one \gamma lost) \rightarrow estimated by MC
Semi-inclusive LEPTO 6.1
Exclusive HEPGEN \pi^0
(Goloskokov-Kroll model)
```

```
The sum of the 2 contributions LEPTO and HEPGEN is normalised to M_{\gamma\gamma} peak in real data
```


Visible π^0 candidates

3

$$S_{CS,U} = 2[d\sigma^{BH} + c_0^{DVCS} + c_1^{DVCS} \cos \phi + c_2^{DVCS} \cos 2\phi + s_1^I \sin \phi + s_2^I \sin 2\phi]$$
EVALUATE: Brian Ventura - DIS 2021

13

Summary and Outlook

$$d\sigma^{DVCS}/dt = e^{-B|t|} = c_0^{DVCS}$$

- Measurement of $S_{CS,U}$ gives access to c_0^{DVCS} \rightarrow transverse extension of the proton
- With full 2016-17 statistics, expect 3 bins in $x_{\rm B}$ around the 2012 result

$$< r_{\perp}^{2}(x_{B}) > \approx 2B(x_{B})$$

$$(2019) 188-194 \qquad 0.6 \text{ for } 0.5 \text{ for } 0.4 \qquad 0.5 \text{ for } 0.4 \qquad 0.6 \text{ for } 0.5 \text{ for } 0.4 \qquad 0.5 \text{ for } 0.4 \qquad 0.6 \text{ for } 0.5 \text{ for } 0.4 \qquad 0.5 \text{ for } 0.4 \qquad 0.6 \text{ for } 0.5 \text{ for } 0.4 \qquad 0.6 \text{ for } 0.5 \text{ for } 0.4 \qquad 0.6 \text{ for } 0.5 \text{ for } 0.4 \qquad 0.6 \text{ for } 0.5 \text{ for } 0.4 \qquad 0.6 \text{ for } 0.5 \text{ for } 0.4 \qquad 0.6 \text{ for } 0.5 \text{ for } 0.4 \qquad 0.6 \text{ for } 0.5 \text{ for } 0.4 \qquad 0.6 \text{ for } 0.5 \text{ for } 0.4 \qquad 0.6 \text{ for } 0.4 \quad 0.4 \text{ for } 0.4 \quad 0.6 \text{ for } 0.4 \quad 0.4 \text{ for } 0.4 \text{ for } 0.4 \quad 0.4 \text{ for } 0.4 \text{ for$$