New M2 beamline at CERN SPS from the AMBER perspective

Catarina Quintans, LIP-Lisboa 18 October 2021, School on the Physics of Baryons

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS

The opportunity:

In the North Area at CERN, SPS beam of high-intensity and high-energy is hitting several primary targets. The secondary beams obtained supply different beamlines

At the M2 beamline, unique-in-the-world beams are available:

- Muon beams of both charges
- Hadron beams of both charges

In a wide range of momenta: 50 - 280 GeV/c

From COMPASS to AMBER

Apparatus for Meson and Baryon Experimental Research

The COMPASS experiment. (Image: CERN)

physics possibilities

Des energy	Physics	Beam	Beam	Trigger	Beam	Townst	Earliest	Hardware		
Program	Goals	Energy [GeV]	r_{e}^{-1}		Type	Target	duration	additions		
muon-proton	Precision			[KI1Z]		high-	duration	active TPC,		htt
elastic	proton-radius	100	$4 \cdot 10^{6}$	100	μ^{\pm}	pressure	2022	SciFi trigger,		
scattering	measurement					H2	1 year	silicon veto,		
Hard								recoil silicon,		
exclusive	GPD E	160	$2 \cdot 10^{7}$	10	μ^{\pm}	NH_3^{\uparrow}	2022	modified polarised		
reactions							2 years	target magnet		
Input for Dark	\overline{p} production	20-280	$5 \cdot 10^{5}$	25	р	LH2,	2022	liquid helium	- >	> Dha
Matter Search	cross section				-	LHe	1 month	target	- (1 110
								target spectrometer:	- 1	AMRE
\overline{p} -induced	Heavy quark	12, 20	$5 \cdot 10^{7}$	25	\overline{p}	LH2	2022	tracking,		
spectroscopy	exotics						2 years	calorimetry		http://co
Drell-Yan	Pion PDFs	190	$7 \cdot 10^{7}$	25	π^{\pm}	C/W	2022			mtp.//00
							1-2 years		J	
Drell-Yan (RF)	Kaon PDFs & Nucleon TMDs	~100	10 ⁸	25-50	K^{\pm}, \overline{p}	$\mathrm{NH}_{3}^{\uparrow},$ C/W	2026 2-3 years	"active absorber", vertex detector)	
	Kaon polarisa-						non-exclusive		- 1	
Primakoff	bility & pion	~ 100	$5 \cdot 10^{6}$	> 10	K^{-}	Ni	2026		- 1	
(RF)	life time						1 year			
Prompt							non-exclusive		_ \	Dha
Photons	Meson gluon	≥ 100	$5 \cdot 10^{6}$	10-100	K^{\pm}	LH2,	2026	hodoscope	- 1	r Pha
(RF)	PDFs				π^{\pm}	Ni	1-2 years			
K-induced	High-precision									
Spectroscopy	strange-meson	50-100	$5 \cdot 10^{6}$	25	K^{-}	LH2	2026	recoil TOF,		
(RF)	spectrum						1 year	forward PID		
	Spin Density									
Vector mesons	Matrix	50-100	$5 \cdot 10^{6}$	10-100	K^{\pm}, π^{\pm}	from H	2026			
(RF)	Elements					to Pb	1 year			

...as expressed in the LoI: ps://arxiv.org/pdf/1808.00848.pdf

ase-l

R Proposal Phase-I:

ds.cern.ch/record/2676885?In=en

se-ll

M2 beamline

At 190 GeV/c:

- Negative: 97% π^- , 2.5% K⁻, < 1% \overline{p}
- Positive: 74% p, 24% π^+ , 2% K^+

The muon beam

The physics questions to be answered:

The massive world we observe is made of protons – stable particles composed of quarks and gluons.

The variety of hadrons, mostly short-lived, and why their very different characteristics, Is the subject of Quantum Chromodynamics.

Emergence of Hadron Mass

How to understand that $M_{\pi}/M_{p} \sim 1/7$, while from constituent-quarks model one would expect ~2/3?

Only 1% of the proton mass is due to the Higgs mechanism.

Emergence of Hadron Mass

Dynamic Chiral Symmetry Breaking of QCD leads to the quarks and gluons rapidly acquiring a running mass in the infrared limit

EHM at AMBER

The Emergence of Hadron Mass is the leitmotiv for the various proposed measurements.

EHM is key for understanding QCD, a theoretical approach that addresses:

- Hadron charge radii
- Hadron masses
- Hadron spectroscopy
- Hadron structure

- ... and all this to be validated by:
- Lattice calculations
- Experimental measurements

1) The proton charge radius puzzle

Two types of measurements: **lepton-proton scattering** and **hydrogen spectroscopy** leading to discrepant results $\rightarrow -5 \sigma$

Proton radius at AMBER

The proton charge radius can be accessed via the electromagnetic form factors. Experimentally, AMBER will measure the **elastic muon-proton scattering** for this:

Muon-proton high energy scattering

2) The pion structure

Extractions including Drell-Yan data and leading-neutron DIS data

JAM, arXiv:2108.05822

Drell-Yan at AMBER: access to pion structure

Pion-induced Drell-Yan at AMBER

Isoscalar target Both beam charges High statistics

Table 7: Statistics collected by earlier experiments (top rows), compared with the achievable statistics of the proposed experiment (bottom rows), in 213 days (π^+ beam) + 67 days (π^- beam).

Approved

Experiment	Target type	Beam energy (GeV)	Beam type	Beam intensity (part/sec)	DY mass (GeV/c ²)	DY events
E615	20 cm W	252	π^+ π^-	17.6×10^{7} 18.6×10^{7}	4.05 - 8.55	5000 30000
NA3	30 cm H ₂	200	π^+ π^-	2.0×10^7 3.0×10^7	4.1 - 8.5	40 121
	6 cm Pt	200	π^+ π^-	2.0×10^7 3.0×10^7	4.2 - 8.5	1767 4961
	120 cm D ₂	286 140	π^{-}	65×10^7	4.2 - 8.5 4.35 - 8.5	7800 3200
NA10	12 cm W	286 194 140	π^{-}	65×10^7	4.2 - 8.5 4.07 - 8.5 4.35 - 8.5	49600 155000 29300
COMPASS 2015 COMPASS 2018	110 cm NH ₃	190	π^{-}	7.0×10^{7}	4.3 - 8.5	35000 52000
	75 cm C	190	π^+	1.7×10^{7}	4.3 - 8.5 4.0 - 8.5	21700 31000
AMBER		190	π^{-}	6.8×10^{7}	4.3 - 8.5 4.0 - 8.5	67000 91100
	12 cm W	190	π^+	0.4×10^7	4.3 - 8.5 4.0 - 8.5	8300 11700
		190	π^{-}	1.6×10^{7}	4.3 - 8.5 4.0 - 8.5	24100 32100

Gluon content in the pion

what can we learn from J/ψ production at AMBER?

- Large statistics on J/ψ production at dimuon channel
- Inclusive: due to the hadron absorber, we cannot distinguish prompt production from the rest
- Expected significant feed-down: $\psi(2S)$, χ_{c1} , χ_{c2}
- In the low-pT regime
- Expected to have dominant contribution from $2 \rightarrow 1$ processes
- Use J/ψ polarization to distinguish production mechanism:

3) A detour: the antiproton production cross section

p cross section at AMBER

- Secondary proton beams from SPS at 50, 100 and 190 and 280 GeV/c
- Liquid Hydrogen and Helium targets
- Antiprotons identified using RICH

Plots: Impact of AMBER in constraining the \overline{p} production versus kinetic energy.

Approved

Opportunities, further ahead in the future:

Radio-frequency separated hadron beams

AMBER Phase-II

Upgraded M2 beamline: RF-separated beams

Radio-frequency separation is a technique where some particle species end dumped in a beam stopper, while the chosen ones (dependent on distance "I") provide a **cleaner**, still intense, beam.

$$\Delta\phi\approx\frac{\pi fL}{c}\frac{m_w^2-m_u^2}{p^2}$$

R&D from CERN Beams Department

- K^{\pm} beams with 60 100 GeV/c
- p beam with 80 110 GeV/c

Question: but how high can the beam intensity be?

4) Kaon structure: u/u

Kaon structure: a window to the region of interference between the Higgs mechanism and the EHM mechanism

Z-F. Cui, et al. EPJC80(2020)1064, H-W. Lin et al., PRD103(2021)014516

Kaon structure: valence and sea

First-ever kaon sea-valence separation: using both charges kaon beams

 $R_{s/v} = \frac{\sigma^{K^+C}}{\sigma^{K^-C} - \sigma^{K^+C}} \longrightarrow \propto u_v^K u_v^p$

Higher beam momentum: access to lower $x_{_{\kappa}}$

Experiment	Target type	Beam type	Beam intensity (part/sec)	Beam energy (GeV)	DY mass (GeV/c ²)	DY e $\mu^+\mu^-$	vents e^+e^-
NA3	6cm Pt	K ⁻	????	200	4.2 - 8.5	700	0
	100cm C	K-	$2.1 imes 10^7$	80 100	4.0 - 8.5 4.0 - 8.5	25,000 40,000	13,700 17,700
AMBER		K ⁺	$2.1 imes 10^7$	80 100	4.0 - 8.5 4.0 - 8.5	2,800 5,200	1,300 2,000
AMBER	100cm C	π^-	$4.8 imes 10^7$	80 100	4.0 - 8.5 4.0 - 8.5	65,500 95,500	29,700 36,000

Kaon-induced Drell-Yan in AMBER

If using kaons from RF-separated beams, the momentum must be < 100 GeV/c

In a fixed-target experiment, the lower beam momentum implies smaller angular acceptance

In order to keep the dilepton acceptance $\sim 40\%$

"Active absorber":

- Trackers
- Magnetic field
- Large area
- Compact

Compress the spectrometer

J/Ψ production: an access to the gluon content in the kaon

- J/Ψ data collected in parallel with kaon-induced Drell-Yan
- Large statistics
- Model-dependent access to the gluon distribution in kaons
- J/Ψ production cross section (LO):

Using Color Evaporation Model (Int.J.Mod.Phys. A 10 (1995) 3043) and JAM18 "pion" PDFs (PRL 121, 152001 (2018))

background

100 GeV K⁺ beam on a long IH₂ target

Kaon-induced prompt-photon production

In 140 days

Experiment	Target	Beam	Beam Intensity	Beam Energy	$\int \mathcal{L}$	p_T range	prompt-photon
	type	type	(part/sec)	(GeV)	(pb^{-1})	$({\rm GeV/c})$	events
WA70	$1 \mathrm{m} \ \mathrm{lH}_2$	π^+	2.5×10^6	280	1.3	$4 < p_T < 7$	
		π^{-}	1.25×10^7	280	3.5	$4 < p_T < 7$	—
AMBER	$2 \mathrm{m} \ \mathrm{lH}_2$	K^+	2×10^7	100	50	$p_T > 2.5$	$3.4 imes 10^6$
		π^+	$2 imes 10^7$	100	50	$p_T > 2.5$	$3.4 imes 10^6$

6) Kaon beam: an opportunity for strange-meson spectroscopy

From the 25 strange mesons listed presently in the PDG, 13 still need experimental confirmation:

- 3 predicted K^*_{j} states missing. Searches via $K^{\pm}p$ scattering, like $K^{\pm}p \rightarrow K\pi n$ or through heavy meson and τ decays
- 11 predicted K_j states missing.
 Searches via heavy meson and τ decays to multi-body final states

X: strange-meson Searched for and characterized with Partial Wave Analysis

7) Meson radii

 $r_{\pi}^2 = -\frac{6}{F_{\pi}(0)} \frac{d}{dQ^2} F_{\pi}(Q^2)$

Pion and kaon radii: an expression of the link between EHM and confinement

Pion radius

Measurements of pion scattering at low Q^2 , done in the 1980's

 r_{π} =0.659 ± 0.004 fm (PDG 2020)

Kaon radius

Practically unknown

 r_{κ} =0.560 ± 0.031 fm (PDG 2020)

Kaon charge radius

80 GeV RF-separated beam: kaon – electron elastic scattering, to acces the kaon form factor $K^{-} e_{target}^{-} \rightarrow K^{-} e^{-}$ $s = 2E_{b}m_{e} + m_{b}^{2} + m_{e}^{2}$ $Q_{max}^{2} = \frac{4p_{b}^{2} m_{e}^{2}}{s}$

 $0.001 < Q^2 < 0.07 \text{ GeV}^2$

Beam	<i>Е_b</i> [GeV]	<i>Q</i> ² _{max} [GeV ²]	<i>E'_{b,min}</i> [GeV]	Relative charge-radius effect on c.s. at Q^2_{max}
π	190	0.176	17.3	~40%
K	190	0.086	105.7	~20%
	80	0.066	59.9	~15%
	50	0.037	41.3	~8%

...In summary

The AMBER experiment at the CERN M2 beamline is a new "QCD Facility" to investigate the Emergence of Hadron Mass

AMBER phase-I was approved in December 2020, for measurements on

- Proton radius from muon-proton elastic scattering
- Pion structure from pion-induced Drell-Yan and Charmonium production
- Antiproton cross-sections input for Dark Matter searches

The planned upgrade of the M2 beamline will provide radio-frequency separated hadron beams. High purity kaon beams are being proposed for a phase-II of AMBER:

- Kaon structure from kaon-induced Drell-Yan and Charmonium production
- Gluon content in the kaon from direct-photon production
- Light meson spectroscopy using kaon beams
- Kaon charge radius from elastic kaon-electron scattering