Strange-Meson Spectroscopy at COMPASS and Beyond

Stefan Wallner
for the COMPASS Collaboration

Institute for Hadronic Structure and Fundamental Symmetries - Technical University of Munich

November 16, 2020
XVII International Workshop on Hadron Structure and Spectroscopy
Strange-Meson Spectroscopy

PDG

- PDG lists 25 strange mesons
- 13 established states, 12 need further confirmation
- Missing states with respect to quark-model prediction

Strange-Meson Spectroscopy

K^*_J states

- 8 of 11 listed K^*_J states are established
- Decay to $K\pi$ and other final states
- From precise measurements of
 - $K\pi$ scattering, e.g. from $K^\pm p \rightarrow K^{\pm} \pi^+ n$
 - heavy-meson (J/ψ, D, B, η_c) and τ decays

K_J states

- Only 5 of 14 listed K_J states are established
- Cannot decay to $K\pi$ final state
 - Observed in decays to multi-body final states: $K\pi\pi$, $K\phi$, $K\omega$, $\Lambda\bar{p}$
- From measurements of
 - heavy-meson and τ decays
 - various production experiments
Strange-Meson Spectroscopy

K^*_J states

- 8 of 11 listed K^*_J states are established
- Decay to $K\pi$ and other final states
- From precise measurements of
 - $K\pi$ scattering, e.g. from $K^\pm p \rightarrow K^{\pm} \pi^+ n$
 - heavy-meson (J/ψ, D, B, η_c) and τ decays

K_J states

- Only 5 of 14 listed K_J states are established
- Cannot decay to $K\pi$ final state
 - Observed in decays to multi-body final states: $K\pi\pi$, $K\phi$, $K\omega$, $\Lambda\bar{\rho}$
- From measurements of
 - heavy-meson and τ decays
 - various production experiments
Production Experiments

- Production in scattering of high-energy beam
 - K^\pm, γ, K^0_L
- Strange mesons appear as intermediate states X
- Observed in decays into quasi-stable particles
 - $K^-\pi^-\pi^+$ final state produced in diffractive K^- scattering at COMPASS
 - Access to all K^*_J and K_J states (except for $J^P = 0^+$)
Production Experiments

- Production in scattering of high-energy beam
 - K^\pm, γ, K_L^0
- Strange mesons appear as intermediate states X
- Observed in decays into quasi-stable particles
- $K^-\pi^-\pi^+$ final state produced in diffractive K^- scattering at COMPASS
 - Access to all K_j^* and K_J states (except for $J^P = 0^+$)
Rich spectrum of overlapping and interfering X^-
- Dominant well-known states
- States with lower intensity are “hidden”
- Largest data set of diffractively produced $K^-\pi^-\pi^+$
 - $\approx 720\,000$ exclusive events (cf. ACCMOR $200\,000$ exclusive events)
Rich spectrum of overlapping and interfering X^-
- Dominant well-known states
- States with lower intensity are “hidden”
- Largest data set of diffractively produced $K^-\pi^-\pi^+$
 - $\approx 720,000$ exclusive events (cf. ACCMOR 200,000 exclusive events)
- Successive 2-body decay via $\pi^-\pi^+ / K^-\pi^+$ resonance called isobar
- Structures in angular distributions of X^- and isobar decays
- Characteristic signature for spin and parity of the decaying state

Preliminary
Successive 2-body decay via $\pi^-\pi^+ / K^-\pi^+$ resonance called isobar

Structures in angular distributions of X^- and isobar decays

Characteristic signature for spin and parity of the decaying state
- Successive 2-body decay via $\pi^-\pi^+ / K^-\pi^+$ resonance called isobar
- Structures in angular distributions of X^- and isobar decays
- Characteristic signature for spin and parity of the decaying state
Kinematic Distributions

- Successive 2-body decay via $\pi^-\pi^+ / K^-\pi^+$ resonance called isobar
- Structures in angular distributions of X^- and isobar decays
- Characteristic signature for spin and parity of the decaying state
Kinematic Distributions

Partial wave

\[J^P M^\varepsilon \xi b L \]

- **\(J^P M^\varepsilon \):** Spin, parity, and spin projection of \(X^- \)
- **\(\xi \):** Isobar
- **\(b \):** Bachelor particle. Here: Spectator \(K^- \)
- **\(L \):** Angular momentum between bachelor and isobar

Partial-wave amplitudes extracted from data in maximum-likelihood fit.
Kinematic Distributions

Partial wave

\[J^P M^\varepsilon \xi bL \]

- \(J^P M^\varepsilon \): Spin, parity, and spin projection of \(X^- \)
- \(\xi \): Isobar
- \(b \): Bachelor particle. Here: Spectator \(K^- \)
- \(L \): Angular momentum between bachelor and isobar
- Partial-wave amplitudes extracted from data in maximum-likelihood fit
Selected Partial Waves

$J^P = 2^+$

$2^+ 1^+ K^*(892) \pi D$

- Signal in $K_2^*(1430)$ mass region
- Clear phase motion in $K_2^*(1430)$ region
- Characteristic of narrow isolated resonances

![Graph showing intensity vs. $m_{K\pi\pi}$ for $2^+ 1^+ K^*(892) \pi D$ resonance]
Selected Partial Waves
\(J^P = 2^+ \)

\(2^+ 1^+ K^* (892) \pi D \)

- Signal in \(K^*_2 (1430) \) mass region
- Clear phase motion in \(K^*_2 (1430) \) region
 - Characteristic of narrow isolated resonances
Selected Partial Waves

$J^P = 2^+$

$K_2^*(1430)$

- In agreement with previous measurement of $K^-\pi^+\pi^+$ final state at WA03
- Recent precise measurement from BES III
 - $J/\psi \rightarrow K^+K^-\pi^0$
- Various measurements in $K\pi$ scattering
 - $K^+p \rightarrow K_S^0\pi^+p$
 - $K^-p \rightarrow K^-\pi^+n$
- PDG lists different parameters for charged and neutral $K_2^*(1430)$
- Different cluster of parameters
Selected Partial Waves

\(J^P = 2^+ \)

\(K_2^*(1430) \)

- In agreement with previous measurement of \(K^- \pi^- \pi^+ \) final state at WA03
- Recent precise measurement from BES III
 - \(J/\psi \to K^+ K^- \pi^0 \)
- Various measurements in \(K\pi \) scattering
 - \(K^+ p \to K_0^+ \pi^+ p \)
 - \(K^- p \to K^- \pi^+ n \)
- PDG lists different parameters for charged and neutral \(K_2^*(1430) \)
- Different cluster of parameters

Selected Partial Waves

$J^P = 2^+$

$K_2^*(1430)$

- In agreement with previous measurement of $K^-\pi^-\pi^+$ final state at WA03
- Recent precise measurement from BES III
 - $J/\psi \rightarrow K^+K^-\pi^0$
- Various measurements in $K\pi$ scattering
 - $K^+p \rightarrow K^0\pi^+p$
 - $K^-p \rightarrow K^-\pi^+n$
- PDG lists different parameters for charged and neutral $K_2^*(1430)$
- Different cluster of parameters

BESIII, 183 000 events, Phys. Rev. D 100 (2019)
Selected Partial Waves

\[J^P = 2^+ \]

\(K_2^*(1430) \)

- In agreement with previous measurement of \(K^- \pi^- \pi^+ \) final state at WA03
- Recent precise measurement from BES III
 - \(J/\psi \rightarrow K^+ K^- \pi^0 \)
- Various measurements in \(K\pi \) scattering
 - \(K^\pm p \rightarrow K_S^0 \pi^\pm p \)
 - \(K^- p \rightarrow K^- \pi^+ n \)
- PDG lists different parameters for charged and neutral \(K_2^*(1430) \)
- Different cluster of parameters

Selected Partial Waves

$J^P = 2^+$

$K_2^*(1430)$

- In agreement with previous measurement of $K^-\pi^-\pi^+$ final state at WA03
- Recent precise measurement from BES III
 - $J/\psi \rightarrow K^+K^0\pi^0$
- Various measurements in $K\pi$ scattering
 - $K^\pm p \rightarrow K_S^0\pi^\pm p$
 - $K^- p \rightarrow K^-\pi^+ n$
- PDG lists different parameters for charged and neutral $K_2^*(1430)$
- Different cluster of parameters

PDG, Prog. Theor. Exp. Phys. 2020, 083C01 (2020)
Selected Partial Waves

\(J^P = 2^- \)

\[2^- 0^+ K_2^* (1430) \pi S \]

- Strongest 2\(^-\) wave
- Two resonances in signal region
 - \(K_2(1770), K_2(1820) \)
- Bump in high-mass shoulder
 - Potential \(K_2(2250) \)

\[2^- 0^+ \rho(770) K F / 2^- 0^+ K^* (892) \pi F \]

- Similar signals also in \(\rho(770) K \) and \(K^* (892) \pi \) decays

S. Wallner
Strange-Meson Spectroscopy at COMPASS and Beyond
Selected Partial Waves

$J^P = 2^-$

2$^- 0^+ K_2^*(1430) \pi S$

- Strongest 2$^-$ wave
- Two resonances in signal region
 - $K_2(1770), K_2(1820)$
- Bump in high-mass shoulder
 - Potential $K_2(2250)$

2$^- 0^+ \rho(770) K F / 2^- 0^+ K^*(892) \pi F$

- Similar signals also in
 - $\rho(770) K$ and
 - $K^*(892) \pi$ decays
Selected Partial Waves

\(J^P = 2^- \)

\(2^- 0^+ K_2^*(1430) \pi S \)
- Strongest 2\(^-\) wave
- Two resonances in signal region
 - \(K_2(1770), K_2(1820) \)
- Bump in high-mass shoulder
 - Potential \(K_2(2250) \)

\(2^- 0^+ \rho(770) K F / 2^- 0^+ K^*(892) \pi F \)
- Similar signals also in
 - \(\rho(770) K \) and
 - \(K^*(892) \pi \) decays
Selected Partial Waves

\(J^P = 2^- \)

\(K_2(1770) \)

- Observed in \(K\omega \) final state at LASS
- Recent measurement from LHCb in \(B^+ \rightarrow J/\psi\phi K^+ \)
- Mass and width determined from these two measurements only
- Further observations from decays to \(K2\pi, K\phi, K\omega \) final states from production experiments at CERN, SLAC, ...

Selected Partial Waves

\[J^P = 2^- \]

\(K_2(1770)\)

- Observed in \(K\omega\) final state at LASS
- Recent measurement from LHCb in \(B^+ \rightarrow J/\psi\phi K^+\)
- Mass and width determined from these two measurements only
- Further observations from decays to \(K2\pi, K\phi, K\omega\) final states from production experiments at CERN, SLAC, ...

Selected Partial Waves

$J^P = 2^-$

$K_2(1770)$
- Observed in $K\omega$ final state at LASS
- Recent measurement from LHCb in $B^+ \to J/\psi \phi K^+$
- Mass and width determined from these two measurements only
- Further observations from decays to $K2\pi$, $K\phi$, $K\omega$ final states from production experiments at CERN, SLAC, ...

Selected Partial Waves

$J^P = 2^-$

$K_2(1770)$

- Observed in $K\omega$ final state at LASS
- Recent measurement from LHCb in $B^+ \rightarrow J/\psi\phi K^+$
- Mass and width determined from these two measurements only
- Further observations from decays to $K2\pi$, $K\phi$, $K\omega$ final states from production experiments at CERN, SLAC, ...

Selected Partial Waves

\(J^P = 2^- \)

\(K_2(1820) \)

- Observed only in
 - \(K\omega \) final state at LASS
 - \(\phi K^+ \) final state at LHCb
 - \(K^-\pi^-\pi^+ \) final state at WA03

Selected Partial Waves

$J^P = 2^-$

$K_2(2250)$

- Observed mainly in $\Lambda\bar{p}$ final state from production experiments

CERN Ω' spectrometer, 10 000 events, Nucl. Phys. B 227 (1983)
$J^P = 1^+$

$1^+ 0^+ \rho(770) K S$

- 3.4% of total intensity
- Dominated by $K_1(1270)$
- Small potential signal from $K_1(1650)$
Selected Partial Waves

\(J^P = 1^+ \)

K\(_1\)(1270) / K\(_1\)(1400)

- Recent measurements in
 - \(D^0 \rightarrow K^{±}\pi^{±}\pi^{±}\pi^{±} \) from LHCb
 - \(B^+ \rightarrow J/\psi K^{+}\pi^{+}\pi^- \) at Belle
 - \(\tau^- \rightarrow K^-\pi^+\pi^-\nu_\tau \) at Cleo II

- Potential bi-modality in the width of the \(K_1(1270) \)
 - Proposals that \(K_1(1270) \) has two-pole structure similar to \(\Lambda(1405) \) coupling differently to different decay modes

Selected Partial Waves

$J^P = 1^+$

$K_1(1270) / K_1(1400)$

- Recent measurements in
 - $D^0 \rightarrow K^\pm \pi^\mp \pi^\pm \pi^\mp$ from LHCb
 - $B^+ \rightarrow J/\psi K^+ \pi^+ \pi^-$ at Belle
 - $\tau^- \rightarrow K^- \pi^+ \pi^- \nu_\tau$ at Cleo II

- Potential bi-modality in the width of the $K_1(1270)$
 - Proposals that $K_1(1270)$ has two-pole structure similar to $\Lambda(1405)$ coupling differently to different decay modes

Belle, 11 000 events, Phys. Rev. D 83 (2011)
Selected Partial Waves

$J^P = 1^+$

$K_1(1270) / K_1(1400)$

- Recent measurements in
 - $D^0 \rightarrow K^\pm \pi^\pm \pi^\pm \pi^\mp$ from LHCb
 - $B^+ \rightarrow J/\psi K^+ \pi^+ \pi^-$ at Belle
 - $\tau^- \rightarrow K^\mp \pi^+ \nu_\tau$ at Cleo II

- Potential bi-modality in the width of the $K_1(1270)$
 - Proposals that $K_1(1270)$ has two-pole structure similar to $\Lambda(1405)$ coupling differently to different decay modes

Selected Partial Waves

\[J^P = 1^+ \]

\[K_1(1270) / K_1(1400) \]

- Recent measurements in
 - \(D^0 \to K^{\pm} \pi^{\pm} \pi^{\pm} \pi^{\mp} \) from LHCb
 - \(B^+ \to J/\psi K^+ \pi^+ \pi^- \) at Belle
 - \(\tau^- \to K^- \pi^+ \pi^- \nu_{\tau} \) at Cleo II

- Potential bi-modality in the width of the \(K_1(1270) \)
 - Proposals that \(K_1(1270) \) has two-pole structure similar to \(\Lambda(1405) \) coupling differently to different decay modes
Selected Partial Waves

$J^P = 1^+$

$K_1(1650)$

- Cannot be accessed in D or τ decays
 - $K_1(1650)$ low-mass tails can contribute
- Observed in
 - $B^+ \to J/\psi\phi K^+$ decays at LHCb
 - ϕK and $K \pi \pi$ final states from production experiments at CERN
- Parameters driven by one measurement
- Further confirmation needed
Selected Partial Waves

$J^P = 1^+$

$K_1(1650)$

- Cannot be accessed in D or τ decays
 - $K_1(1650)$ low-mass tails can contribute
- Observed in
 - $B^+ \rightarrow J/\psi K^+$ decays at LHCb
 - ϕK and $K\pi\pi$ final states from production experiments at CERN
- Parameters driven by one measurement
- Further confirmation needed

Leakage Effect in COMPASS Data

- Unexpected low-mass enhancement in $3^+ 1^+ K^*(892)\pi D$ wave
- Sensitive to systematic effects
- Final-state PID does not cover full kinematic range
 - Reduced distinguishability of partial waves
- Only a small sub-set of partial waves affected

\[
\begin{align*}
\text{Intensity} \times 10^6 & = \frac{1^+ 1^+ K^*(892)\pi D}{1.0 \text{ GeV/c}^2} \\
0.10 \leq t' < 1.00 \text{ (GeV/c)}^2 & \quad 4.3 \% \\
\end{align*}
\]

Affected by leakage

Preliminary
Unpacking the Leakage Effect in COMPASS Data

- Unexpected low-mass enhancement in $3^+ 1^+ K^* (892) \pi D$ wave
- Sensitive to systematic effects
 - Final-state PID does not cover full kinematic range
 - Reduced distinguishability of partial waves
 - Only a small sub-set of partial waves affected

Graphical representation:

- Intensity / $(1.0 \text{ GeV/c}^2) \times 10^6$
- Mass $m_{K\pi\pi}$ [GeV/c2]
- $3^+ 1^+ \bar{K}^* (892) \pi D$
- $0.10 \leq t' < 1.00 \text{ (GeV/c)}^2$
- Main Studies
- Preliminary
Leakage Effect in COMPASS Data

- Unexpected low-mass enhancement in $3^+ 1^+ K^*(892) \pi$ D wave
-Sensitive to systematic effects
-Final-state PID does not cover full kinematic range
 - Reduced distinguishability of partial waves
-Only a small sub-set of partial waves affected
Leakage Effect in COMPASS Data

- Unexpected low-mass enhancement in $3^+ 1^+ K^*(892)\pi D$ wave
- Sensitive to systematic effects
- Final-state PID does not cover full kinematic range
 - Reduced distinguishability of partial waves
- Only a small sub-set of partial waves affected
Strange-meson spectroscopy

- Many states need further clarification
- Many measurements performed more than 30 years ago
- Most of the recent measurements from heavy-meson or τ decays

$K^-\pi^-\pi^+$ final state at COMPASS

- World’s largest data set of diffractively produced $K^-\pi^-\pi^+$
- Observation of well-known states
- Potential signals from excited states
- Few signals were identified to be affected by large systematic effects
Strange-meson spectroscopy

- Many states need further clarification
- Many measurements performed more than 30 years ago
- Most of the recent measurements from heavy-meson or τ decays

$K^-\pi^-\pi^+$ final state at COMPASS

- World’s largest data set of diffractively produced $K^-\pi^-\pi^+$
 - Observation of well-known states
 - Potential signals from excited states
 - Few signals were identified to be affected by large systematic effects
Strange-meson spectroscopy

- Many states need further clarification
- Many measurements performed more than 30 years ago
- Most of the recent measurements from heavy-meson or τ decays

$K^-\pi^-\pi^+$ final state at COMPASS

- World’s largest data set of diffractively produced $K^-\pi^-\pi^+$
- Observation of well-known states
- Potential signals from excited states
- Few signals were identified to be affected by large systematic effects

Preliminary
Strange-meson spectroscopy

- Many states need further clarification
- Many measurements performed more than 30 years ago
- Most of the recent measurements from heavy-meson or τ decays

$K^-\pi^-\pi^+$ final state at COMPASS

- World’s largest data set of diffractively produced $K^-\pi^-\pi^+$
- Observation of well-known states
- Potential signals from excited states
- Few signals were identified to be affected by large systematic effects
Summary

Strange-meson spectroscopy

- Many states need further clarification
- Many measurements performed more than 30 years ago
- Most of the recent measurements from heavy-meson or τ decays

$K^-\pi^-\pi^+$ final state at COMPASS

- World’s largest data set of diffractively produced $K^-\pi^-\pi^+$
- Observation of well-known states
- Potential signals from excited states
- Few signals were identified to be affected by large systematic effects
Spectroscopy of strange mesons

- Radio-frequency separated high-intensity high-energy kaon beam
 - Series of workshops at CERN
- At least $\times 10$ larger data set than collected by COMPASS
- Map out strange-meson spectrum with similar precision as unflavored light-meson spectrum
- Proposal for phase-1: CERN-SPSC-2019-022
 - Recommended by SPSC
 - Formation of new collaboration in process
Backup