

Experimental overview of exclusive reactions (related to GPDs)

Nicole d'Hose, CEA Université Paris-Saclay

Past & present for exclusive experiments <u>at small t</u>: $\ell p \rightarrow \ell' p' \gamma$ or meson

Collider mode e-p: forward fast proton

HERA: H1 and ZEUS Polarised 27 GeV e-/e+ Unpolarized 920 GeV proton ~ Full event reconstruction (proton in Roman Pots)

Fixed target mode: slow recoiling proton

HERMES: Polarised **27** GeV e-/e+ Long, Trans polarised p, d target *Missing mass technique* 2006-07 with recoil detector

Jlab: Hall A, C, CLAS, CLAS12 High Luminosity Polar. 6 & 12 GeV e-Long, (Trans) polarised p, d target Missing mass technique (A,C) and complete detection (CLAS)

COMPASS @ CERN: Polarised 160 GeV µ+/µ-

p target, (Trans) polarised target with recoil detection

Rejection of background: SIDIS, exclusive π^0 /DVCS, dissociation of the proton

Past and future experiments for DVCS $\ell p \rightarrow \ell' p' \gamma$

D. Mueller et al, Fortsch. Phys. 42 (1994)
 X.D. Ji, PRL 78 (1997), PRD 55 (1997)
 A. V. Radyushkin, PLB 385 (1996), PRD 56 (1997)

DVCS: $\ell p \rightarrow \ell' p' \gamma$ the golden channel because it interferes with the Bethe-Heitler process

also meson production $\ell p \rightarrow \ell' p' \pi, \rho, \omega \text{ or } \phi \text{ or } J/\psi...$

The GPDs depend on the following variables:

- x: average long. momentum
- ξ : long. mom. difference
- t: four-momentum transfer related to b_{\perp} via Fourier transform

The variables measured in the experiment: $E_{\ell}, Q^2, x_B \sim 2\xi / (1+\xi),$ $t (or \theta_{\gamma*\gamma}) and \phi (\ell\ell' plane/\gamma\gamma* plane)$

The amplitude DVCS at LT & LO in α_{s} (GPD H): $\begin{aligned}
\mathbf{H} &= \int_{t, \xi \text{ fixed}}^{+1} dx \quad \frac{\mathrm{H}(x,\xi,t)}{x-\xi+i\varepsilon} = \mathcal{P} \int_{-1}^{+1} dx \frac{\mathrm{H}(x,\xi,t)}{x-\xi} - i \pi \mathrm{H}(x = \pm \xi,\xi,t)
\end{aligned}$

In an experiment we measure Compton Form Factor ${\cal H}$

$$\mathcal{ReH}(\xi,t) = \pi^{-1} \int dx \, \frac{Im\mathcal{H}(x,t)}{x-\xi} + \Delta(t)$$

M. Polyakov, P. Schweitzer, Int.J.Mod.Phys. A33 (2018)

M. Burkardt, PRD66(2002)

Mapping in the transverse plane $r^2 p(r)$ in GeV fm⁻¹ Pressure 0.01 $\mathrm{d}r\,r^2p(r)=0$ and gluons Distribution 0.005 cloud Valenc confining pion cloud x = 0.01 FT of H(x, ξ=0,t) In χQSM. repulsive -0.005 0.5 r in fm The amplitude DVCS at LT & LO in α_s (GPD H): **Real part Imaginary part** $\mathcal{H} = \int_{t,\xi \text{ fixed}}^{t+1} dx \ \frac{H(x,\xi,t)}{x-\xi+i\varepsilon} = \mathcal{P} \int_{-1}^{t+1} dx \ \frac{H(x,\xi,t)}{x-\xi} - i \ \pi \ H(x = \pm \xi,\xi,t)$ 2~ Ortein $\mathcal{Re}\mathcal{H}(\xi,t) = \pi^{-1} \int dx \, \frac{Im\mathcal{H}(x,t)}{x-\xi}$ In an experiment we measure Compton Form Factor ${\cal H}$

GPDs and 3D imaging

GPDs and Energy-Momentum Tensor and Confinement

2001-2012: A complete set of DVCS asymmetries at Hermes

HERMES 27 GeV provided a complete set of observables 2001: 1st DVCS publication as CLAS & H1 2007: end of data taking 2012: still important publications JHEP 07 (2012) 032 A_C A_{LU} JHEP10(2012) 042 A_{LU} with recoil detection (2006-7)

Note: the neutron allows✓ flavor decomposition

 \checkmark access to E

2004-2015: Beam Spin Sum and Diff for DVCS - HallA

2010-2017: Beam Spin Sum and Diff for DVCS - HallA

E07-007 Hall-A experiment in 2010 with magnetic spectrometer

x_B=0.36, Q²= 1.75 GeV², -t= 0.30 GeV²

Defurne et al., Nature Communications 8 (2017) 1408

Unpolarized cross section

$$d\sigma \leftarrow + d\sigma \rightarrow \propto d\sigma^{BH} + d\sigma^{DVCS}_{unpol} + \operatorname{Re} I$$

$$\longrightarrow d\sigma^{BH} + c_0^{DVCS} + c_1^{DVCS} \cos \phi + c_2^{DVCS} \cos 2\phi$$

$$+ c_0^I + c_1^I \cos \phi + c_2^I \cos 2\phi + c_3^I \cos 3\phi$$

Helicity Dependent cross section

$$\Delta^{4}\sigma \quad d\sigma \leftarrow -d\sigma \rightarrow \propto d\sigma_{pol}^{DVCS} + \operatorname{Im} I$$
$$\longrightarrow s_{1}^{DVCS} \sin \phi + s_{1}^{I} \sin \phi + s_{2}^{I} \sin 2\phi$$

2 solutions: higher-twist OR next-to-leading order

2005-2018: Beam Spin Sum and Diff for DVCS - CLAS

KM10a – – – **(KM10**) Kumericki, Mueller, NPB (2010) 841

Flexible parametrization of the GPDs based on both a Mellin-Barnes representation and dispersion integral which entangle skewness and t dependences

Global fit on the world data ranging from H1, ZEUS to HERMES, JLab

 $\overrightarrow{e} p \rightarrow e \gamma p$

models:

VGG Vanderhaeghen, Guichon, Guidal PRL80(1998), PRD60(1999), PPNP47(2001), PRD72(2005) 1rst model of GPDs improved regularly

KMS12 Kroll, Moutarde, Sabatié, EPJC73 (2013) using the **GK** model Goloskokov, Kroll, EPJC42,50,53,59,65,74

for GPD adjusted on the hard exclusive meson production at small $x_{\rm B}$ "universality" of GPDs

2009-2015: Single Spin and Double Spin - CLAS

nucleon tomography in the valence domain

Fit of 8 CFFs at L.O and L.T.

<u>Im \mathcal{H} , Re \mathcal{H} , Im \mathcal{E} , Re \mathcal{E} , <u>Im \mathcal{H} </u>, Re \mathcal{H} , Im \mathcal{E} , Re \mathcal{E} </u>

- $H(x, 0, 0) = q(x) \qquad \tilde{H}(x, 0, 0) = \Delta q(x)$ $\int_{-1}^{+1} H dx = F_1 \qquad \int_{-1}^{+1} \tilde{H} dx = G_A$
 - $Im(H) \rightarrow$ electromagnetic charge distribution $Im(\tilde{H}) \rightarrow$ axial charge distribution

Axial charge is more concentrated than electromagnetic charge

Seder et al. PRL114, 032001 (**2015**) Pisano et al. PRD91, 052014 (**2015**)

nucleon tomography in the valence domain

2012-2019: Beam Charge & Spin Sum for DVCS - COMPASS

 π° background contribution from SIDIS (LEPTO) + exclusive production (HEPGEN)

COMPASS PLB793 (2019) 188-194

2012-2019: Beam Charge & Spin Sum for DVCS - COMPASS

nucleon tomography in the gluon and sea quark domains

$$d\sigma^{DVCS}/dt = e^{-B'|t|} = c_0^{DVCS}$$

At COMPASS: $\langle x_{Bj} \rangle = 0.056$;; t varies from 0.08 to 0.64 GeV²

At small x_{Bj} and small *t*:

$$\mathbf{C_0}^{DVCS} \propto 4(\mathcal{H}\mathcal{H}^* + \tilde{\mathcal{H}}\tilde{\mathcal{H}}^*) - \frac{t}{\mathcal{M}^2}\mathcal{E}\tilde{\mathcal{E}}^*$$

Dominance of *ImH* (with respect of *ReH* and other *CFFs*)

nucleon tomography in the gluon and sea quark domains

$$d\sigma^{DVCS}/dt = e^{-B'|t|} = c_0^{DVCS}$$

At COMPASS: $\langle x_{Bj} \rangle = 0.056$;; t varies from 0.08 to 0.64 GeV²

At small x_{Bj} and small *t*:

$$\mathbf{C_0}^{DVCS} \propto 4(\mathcal{H}\mathcal{H}^* + \tilde{\mathcal{H}}\tilde{\mathcal{H}}^*) - \frac{t}{M^2}\mathcal{E}\tilde{\mathcal{E}}^*$$

Dominance of *ImH* (with respect of *ReH* and other *CFFs*)

D-term and Pressure distribution in the proton

 Δ (t) subtraction constant of the DVCS dispersion relation:

$$\operatorname{Re}\mathscr{H}(\xi, t) = \Delta(t) + \frac{1}{\pi} \operatorname{P.V.} \int_{0}^{t} dx \left(\frac{1}{\xi - x} - \frac{1}{\xi + x}\right) \operatorname{Im}\mathscr{H}(x, t)$$

Relation with D(z,t), the D-term of the GPD

& with d_1^q , the proton gravitational FF (the spherical Bessel transform of the pressure):

$$\Delta(t) = 2\sum_{q} Q_q^2 \int_{-1}^{1} \mathrm{d}z \underbrace{\frac{\mathcal{D}_q(z,t)}{1-z}}_{1-z} = 4\sum_{q} Q_q^2 \underbrace{d_1^q(t)}_{1} + \ldots, q = u, d, \ldots$$

Q is the quark charge With assumptions, considering only u and d quarks:

$$d_{1}^{Q}\left(t
ight)=rac{9}{10}\Delta\left(t
ight)$$

 $-1 < z = \frac{x}{c} < 1$

The spherical Bessel transform of the pressure :

M.V. Polyakov, Phys. Lett. B555 (2003) 57 M.V. Polyakov, P. Schweitzer, Int.J.Mod.Phys. A33 (2018)

D-term and Pressure distribution in the proton

V. Burkert et al., Nature 557, 396-399 (2018)

acurate $\Delta(t)$ to determine D-term and pressure within some assumptions

within some assumptions $\Lambda(+-\Omega) = 1.62 \pm 0.11 \pm 0.2$

 $\Delta(t=0) = -1.63 \pm 0.11 \pm 0.24$

This is a critical result, required for dynamical stability of the proton. Deeply rooted in chiral symmetry breaking.

however improvement of uncertainties Using flexible parametrization by neural networks

K. Kumericki, Nature 570, E1–E2 (2019)

 $\Delta(t) = 0.78 \pm 1.5$ (statistical uncertainty) with almost no dependence on t

→ D-term and pressure consistent with 0
 → waiting for more data sensitive to Re H
 (importance of µ[±] at COMPASS and e⁺ at JLab)

next future: Beam Charge and Spin Diff @ COMPASS

next future: Beam Spin Sum and Diff @ JLab12

next future: GPD E @ JLab12 with CLAS12

$\ell d \rightarrow \ell n \gamma (p)$

$\vec{\ell} p \rightarrow \ell p \gamma$

0.2

0.1

0.3

0.4 Xp

2021: 110 days on HD-lce target Lumi= $5 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}/\text{nucleon}$

2010-2020 : DVCS off the neutron in Hall A @ 6 GeV

And other paths to get GPDs

Study of protons and neutrons

Time Like Compton Scattering

Double DVCS

Projects which start to be explored with the high lumnosity of JLab12 (in Hall-C or with CLAS12 and Solid)

Study of nuclei

(HERMES, JLab6, JLab12)

First measurement on He4: Hattawy, PRL 119 (**2017**) Spin 0 target, one chiral even GPD

Off bound protons: Hattawy, PRL 123(**2019**) Ratio of the bound to the free proton at ϕ =90°

GPDs and Hard Exclusive Meson Production

Quark contribution

Gluon contribution at the same order in α_s

The meson wave function Is an additional non-perturbative term 4 chiral-even GPDs: helicity of parton unchanged

$$H^q(x, \xi, t)$$
 $E^q(x, \xi, t)$ For Vector Meson $\widetilde{H}^q(x, \xi, t)$ $\widetilde{E}^q(x, \xi, t)$ For Pseudo-Scalar Meson

+ 4 chiral-odd or transversity GPDs: helicity of parton changed (not possible in DVCS)

$$\begin{array}{ll} \mathbf{H}_{\mathsf{T}}^{q}(x,\,\xi,\,\mathsf{t}) & \mathbf{E}_{\mathsf{T}}^{q}(x,\,\xi,\,\mathsf{t}) \\ \widetilde{\mathbf{H}}_{\mathsf{T}}^{q}(x,\,\xi,\,\mathsf{t}) & \widetilde{\mathbf{E}}_{\mathsf{T}}^{q}(x,\,\xi,\,\mathsf{t}) \end{array}$$

 $\mathbf{\overline{Eq}}_{\mathbf{T}} = \mathbf{2} \ \mathbf{\widetilde{H}}_{\mathbf{T}}^{q} + \mathbf{E}_{\mathbf{T}}^{q}$ (as Boer-Mulders)

Factorisation proven only for $\sigma_{\!\scriptscriptstyle L}$

 σ_{T} is asymptotically suppressed by $1/Q^2$ but large contribution observed model of σ_{T} with transversity GPDs - divergencies regularized by k_{T} of qand \overline{q} and Sudakov suppression factor

GPDs and Hard Exclusive Vector Meson Production

GK Goloskokov, Kroll, EPJC42,50,53,59,65,74 GPD model constrained by HEMP at small x_B (or large W) dominant (longitudinal) $\gamma_L^* p \rightarrow M p$ and transv. polar. $\gamma_T^* p \rightarrow M p$ quark and gluon contributions (GPDs H, E, H_T) and beyond leading twist

GPDs and Hard Exclusive ω Vector Meson Production

COMPASS

23 SDMEs in 5 classes A, B, C, D, E depending on helicity transitions

SDMEs dependent on beam polarisation shown within shaded areas

GPDs and Hard Exclusive ω Vector Meson Production

GPDs and Hard Exclusive π^0 Production

$$e p \rightarrow e \pi^{0} p \frac{d^{2}\sigma}{dtd\phi_{\pi}} = \frac{1}{2\pi} \left[\left(\epsilon \frac{d\sigma_{L}}{dt} + \frac{d\sigma_{T}}{dt} \right) + \epsilon \cos 2\phi_{\pi} \frac{d\sigma_{TT}}{dt} + \sqrt{2\epsilon(1+\epsilon)} \cos \phi_{\pi} \frac{d\sigma_{LT}}{dt} \right] \\ \left| \langle \tilde{H} \rangle \right|^{2} - \frac{t'}{4m^{2}} \left| \langle \tilde{E} \rangle \right|^{2} \frac{\left| \langle H_{T} \rangle \right|^{2} - \frac{t'}{8m^{2}} \left| \langle \bar{E}_{T} \rangle \right|^{2}}{\left| \langle \bar{E}_{T} \rangle \right|^{2}} \frac{\frac{t'}{16m^{2}} \left| \langle \bar{E}_{T} \rangle \right|^{2}}{\frac{\sqrt{-t'}}{2m} \operatorname{Re} \left[\langle H_{T} \rangle^{*} \langle \tilde{E} \rangle \right]}$$

Jlab 6 GeV Hall-A LH2 target \rightarrow proton Different beam energies \rightarrow L/T separation

LD2 target
 neutron+deuteron

 $D(e,e\pi^{0})X - p(e,e\pi^{0})p = n(e,e\pi^{0})n + d(e,e\pi^{0})d$

→ Flavor decomposition on u and d quarks

GPDs and Hard Exclusive π^0 Production

Future: Key measurements for imaging partons with EIC

Stage 2	
Ee=20 GeVEp=250 G	eV

Stage 1 Ee=5 GeVEp=100 GeV

Deliverables	Observables	What we learn	Requirements
GPDs of	DVCS and $J/\Psi, \rho^0, \phi$	transverse spatial distrib.	$\int dt L \sim 10 \text{ to } 100 \text{fb}^{-1};$
sea quarks	production cross section	of sea quarks and gluons;	Roman Pots;
and gluons	and polarization	total angular momentum	polarized e^- and p beams;
	asymmetries	and spin-orbit correlations	wide range of x_B and Q^2 ;
GPDs of	electroproduction of	dependence on	range of beam energies;
valence and	π^+, K and ρ^+, K^*	quark flavor and	e^+ beam
sea quarks		polarization	valuable for DVCS

Exclusive J/\psi production

Transverse distance of the gluon from the center of the proton in femtometers

Not an exhaustive compilation of all results and projections, also <u>JPARC</u> in the game...

<u>Jlab 12 GeV</u> with the high luminosity electron beam is at the beginning of a very exciting time with a high precision era for valence quarks at large x_B

<u>COMPASS</u>, with high energy muon beams at CERN and <u>RHIC with UPC</u> will provide first results of sea quarks and gluons at small x_B

They are the foundations for the preparation of new experiments at <u>EIC</u>

For example preparation of the EIC Yellow Report

for the detector requirement to study DVCS and π^0 using:

✓ the PARTONS framework

with KM20 CFF tables provided by Kumericki

and GK16 model from Goloskokov and Kroll based on the COMPASS results

 \checkmark an update of the MC event generator MILOU developed for H1 and ZEUS