

Study of double J/ψ production mechanisms at COMPASS

Gridin Andrei (JINR) On behalf of the COMPASS collaboration andrei.gridin@cern.ch

08.09.2020

Physics motivation

- Study of double J/ψ production mechanisms:
 - single parton scattering (SPS)
 - multiparton interactions
 - intrinsic charm of hadron (IC)
- Search for heavy-quark states decaying to two J/ψ

Intrinsic charm of hadron

BHPS model: S.J. Brodsky, Phys. Lett. B 93, 451 (1980)

 The existence of non-perturbative (intrinsic) Fock component in a hadron with *c*-quarks is postulated:

$$|p\rangle = a_0 |uud\rangle + a_1 |uudg\rangle + a_2 |uudc\bar{c}\rangle + \dots$$

- In perturbative QCD the extrinsic charm component in hadrons arises from gluon splitting.
- Intrinsic charm contribution is generated non-perturbatively via $gg \rightarrow Q\bar{Q}$;

V.A. Bednyakov, G.I. Lykasov Phys. Lett. B, 728, 602 (2014)

Intrinsic charm of baryons

• **EMC experiment:** an evidence for an intrinsic charm component in the proton was found from the comparison of EMC data for $F_2(x, Q^2, m_c^2)$ with NLO predictions at large *x*. B. W. Harris, J. Smith, R.Vogt

• SELEX experiment: inconsistency of the Ξ_c^+ , Ξ_{cc}^{++} and Λ_c^+ production rates with QCD predictions. Can be explained within the IC hypothesis (intrinsic charm in the wave function of Ξ_{cc}^{++}).

Intrinsic charm of baryons

• IceCube experiment: IC in the wave function of the projectile proton can significantly contribute to the prompt neutrino flux (can be enhanced by a factor of two at neutrino energies about 10^6 GeV).

• ATLAS experiment: an upper limit on IC probability in proton obtained using $\gamma + c$ -jet data: $w_{c\bar{c}} < 1.93\%$ (68% CL). In agreement with theoretical predictions.

V.A. Bednyakov, S.J. Brodsky et al. EPJC volume 79, 92 (2019)

Intrinsic charm of mesons

The presence of the $|u\bar{d}c\bar{c}\rangle$ Fock state in the ρ :

- $J/\psi \rightarrow \rho \pi$ decay allowed (due of overlap with J/ψ and pion wave functions of the ρ);
- $\psi' \rightarrow \rho \pi$ decay is suppressed (radial wave function of the ψ' has one node and it is orthogonal to the $c\bar{c}$ in the $|u\bar{d}c\bar{c}\rangle$ state of the ρ).

The NA3 double J/ψ results:

- π^- (150, 280 GeV) and p (400 GeV) beams;
- N.B. kinematic distributions are not corrected for the acceptance;
- interpreted using double IC hypothesis $(|d\bar{u}c\bar{c}c\bar{c}\rangle)$ Fock component of pion materialization). R Vogt, S.J. Brodsky

Phys.Lett.B349:569-575,1995

 T_{4c} -tetraquarks

Y. Iwasaki, Prog. Theor. Phys. V.54, p492 (1975)

$N^{2S+1}\ell_J$	M_{T4c}	J^{PC}
Diquark		
$1^{3}S_{1}$	3133.4	1+
Tetraquark		
$1^{1}S_{0}$	5969.4	0++
$1^{3}S_{1}$	6020.9	1+-
$1^{5}S_{2}$	6115.4	2++
$1^{1}P_{1}$	6577.1	1
$1^{3}P_{0}$	6480.4	0^-+
$1^{3}P_{1}$	6577.4	1-+
$1^{3}P_{2}$	6609.9	2-+
1^5P_1	6495.4	1
1^5P_2	6600.2	2
1^5P_3	6641.2	3
$2^{1}S_{0}$	6663.3	0++
$2^{3}S_{1}$	6674.5	1+-
$2^{5}S_{2}$	6698.1	2++
$2^{1}P_{1}$	6944.1	1
$2^{3}P_{0}$	6866.5	0^-+
$2^{3}P_{1}$	6943.9	1-+
$2^{3}P_{2}$	6970.4	2-+
$2^5 P_1$	6875.6	1
2^5P_2	6962.1	2
2^5P_3	6996.7	3

- first time T_{4c} states were predicted in 1975;
- many theoretical models ($[cc][\bar{c}\bar{c}]$ model, Drell-Yan type mechanism, etc) exist;
- $M_{T_{4c}} pprox 6 7 \ {
 m GeV}/c^2;$
- no experimental observations of T_{4c} till 2020;

LHCb double J/ψ results

COMPASS experiment at CERN

COmmon Muon Proton Apparatus for Structure and Spectroscopy

Phase 1:

- Nucleon Spin Structure (2002-2011)
- Hadron Spectroscopy (2008-2009)

CERN's Accelerator Complex

Phase 2:

- Primakoff (2012)
- DVCS, SIDIS (2012, 2016, 2017)
- Drell-Yan (2015, 2018)

COMPASS Drell-Yan setup

10

- hadron beam composition: 96.80% π^- 2.40% \bar{K} , 0.80% \bar{p} ;
- beam momentum : 190 ± 3 GeV/c;
- intensity: up to 7x10⁷ hadrons / sec;

COMPASS Drell-Yan setup

Polarized target:

 two 55 cm long cells filled with NH₃ immersed in LHe used in particular in polarized DY studies.

Nuclear targets (AI and W):

- used to remove hadrons originating from target interactions or beam;
- used as an additional nuclear targets:
 - aluminum (A ~ 27): 7cm length;
 - tungsten (beam plug, 120 cm, A ~ 184):
 first 10 cm used for the physics analyses.

DY and J/ψ studies at COMPASS

• Large statistics of single J/ψ event collected

 $M_{\mu\mu}$ (GeV/c²)

- Mass resolution: $\sigma_{J/\psi} = 0.181 \text{ GeV}/c^2$
- A shoulder from $\psi(2S)$ is visible

Double J/ψ studies at COMPASS

- The distribution of longitudinal momentum fraction of J/ψ pair in the lab frame is studied. Can be used to determine the relative weights of double J/ψ production mechanisms (IC, single parton scattering).
- Invariant mass distribution of double J/ψ events could be used for the search for T_{4c} states.

Double J/ψ data at COMPASS

2015: ~4 months of data taking; 2018: ~5 months of data taking;

NH₃ target: 25 events

• used for the analysis

Al target: 4 events

W target: 21 events

- large background contamination
- used only for cross-section estimation.

14

Differential cross-sections

COMPASS results:

The NA3 results:

 Results were interpreted using double IC of pion hypothesis.

> R Vogt, S.J. Brodsky Phys.Lett.B349:569-575,1995

 N.B. Double J/ψ kinematic distributions were published without acceptance correction.

Double J/ψ mass spectrum

The COMPASS double J/ψ mass spectrum does not contain any evident signal from T_{4c} states.

Double J/ψ production mechanisms

SPS curve:

- HELAC-Onia generator: arXiv:1507.03435 [hep-ph];
- Color Singlet J/ψ production model.

SPS and IC fits:

IC curve:

- predictions for COMPASS from Phys.Part.Nucl.Lett. Vol17, No6 (2020).
- the SPS hypothesis describes the COMPASS data better than IC hypothesis.

Double J/ψ production mechanisms

- relative weights of mechanisms were estimated from the fit;
- the double parton scattering (DPS) is not considered in the fit;
- the DPS contribution at $\sqrt{s} = 18.9$ GeV is less than 8% (arXiv:1909.06195 [hep-ph]);
- the data are consistent with pure SPS hypothesis.

Double J/ψ cross-section measurement

- uncertainty of $\sigma_{J/\psi}$
- background estimation
- acceptance of double J/ψ
- acceptance of single J/ψ
- uncertainty of the number of single J/ψ

$$\begin{aligned} \frac{\sigma_{2J/\psi}}{\sigma_{J/\psi}} \bigg|_{x_{F}>0} &= (1.1 \pm 0.3_{stat} \pm 0.2_{syst}) \cdot 10^{-4} (NH3) \\ \sigma_{2J/\psi}^{NH3} \bigg|_{x_{F}>0} &= 8.8 \pm 2.2_{stat} \pm 2.4_{syst} \frac{pb}{nucleon} \\ \sigma_{2J/\psi}^{W} \bigg|_{x_{F}>0} &= 3.4 \pm 4.3_{stat} \pm 5.8_{syst} \frac{pb}{nucleon} \\ \sigma_{2J/\psi}^{Al} \bigg|_{x_{F}>0} &= 14.3 \pm 7.7_{stat} \pm 4.5_{syst} \frac{pb}{nucleon} \end{aligned}$$

COMPASS results do not contradict to NA3 values.

No A-dependence of $\sigma_{2J/\psi}$ was found.

The measured by the NA3 $\sigma_{J/\psi} = 4.9 \pm 0.77 \frac{nb}{nucleon}$ was used for the estimation of $\sigma_{2J/\psi}$.

Summary

- 1. Double J/ψ hadroproduction is a tool:
 - to study the intrinsic charm component of hadrons
 - to search for bound T_{4c} states.
- 2. The COMPASS collaboration:
 - has searched for double J/ψ events produced in NH₃, AI and W targets
 - has estimated double J/ψ production cross-section.
- 3. The COMPASS data are consistent with SPS production mechanism.
- 4. No evidence of presence of T_{4c} states in the double J/ψ mass spectrum.

Thank you for attention!

Backup