

Drell-Yan measurements at the COMPASS experiment

Marco Meyer-Conde
On Behalf of the COMPASS Collaboration

OUTLINE

- ➤ The COMPASS experimental setup
- ➤ Polarized Drell-Yan measurements
- Unpolarized Drell-Yan studies
- ightharpoonup Double J/ ψ production studies
- Summary and conclusions

THE COMPASS DRELL-YAN (DY) SETUP

- Versatile two-stage spectrometer: large and small angle tracks
- ➤ Unique hadron beam in 2015 and 2018 Drell-Yan runs:

— Hadron beam composition: $(96.80\% \pi, 2.40\% \bar{K}, 0.80\% \bar{p})$

— Beam momentum: $190 \pm 3 \text{ GeV/c}$

— Intensity: up to $\sim 7 \times 10^7$ hadrons / second

- Drell-Yan specificities:
 - Dilution refrigerator (Polarized targets)
 - Hardon absorber

THE COMPASS DRELL-YAN (DY) SETUP

Dilution refrigerator:

- Polarized Targets = Solid state NH_3 beads in a LHe bath (NH3 volume fraction ~47-53%)
- Average spin polarization ~70% (Mainly H_3 protons contribute)

➤ Hadron absorber:

- Alumina structure with a tungsten core (acting as hadron absorber and beam dump)
- Positioned dowsntream of the polarized target
- Nuclear targets: Aluminum (7 cm, A~27) and Tungsten plug (10 first cm, A~184)

DRELL-YAN MEASUREMENT AT COMPASS

Semi-Inclusive
Deep Inelastic Scattering

 $\gamma^*/Z_0(\mathbf{q})$

PDF

 $\ell(k)$

N(P)

Phys.Lett.B717 (2012) 376–382 Phys.Lett.B717 (2012) 383–389 Phys.Rev.Lett.103 (2009) 152002

PDF⊗<mark>FF</mark>

 $(FF = Fragmentation\ Function)$

Significant non-zero asymmetry (Sivers) measured in the spin structure of the nucleon by HERMES and COMPASS

 $Dilepton\ production: DY\ process$

Phys.Lett.B770(2017)138–145

PDF⊗PDF

Beam PDF flavor sensitivity! (valence quarks)

EM process: no fragmentation

Main variables: x_{π} , x_{N} , x_{F} , $M_{\mu\mu}$, q_{T} $x_{F}=x_{1}-x_{2}$ (+other convention: $2p_{L}/\sqrt{s}$)

T-symmetry

COMPASS DY / SIDIS data

COMPASS measured both target spin (in)dependent azimuthal asymmetries, via SIDIS and Polarized DY with the same apparatus

Correlation between DY and SIDIS:

- Initial-state/final-state interaction
- Excepted sign change in the Sivers function of the spin structure of the nucleon

Overlapping (x,Q²) coverage

Minimization of possible Q² evolution effects

q_T: transverse momentum

of the virtual photon

DRELL-YAN KINEMATIC COVERAGE

- > $2.5 < M_{\mu\mu}/(GeV/c^2) < 4.3$ "Charmonia mass range"
 - Good signal/background ratio (large statistics)
 - J/ψ peak Production mechanism study
- ► $4.3 < M_{\mu\mu}/(GeV/c^2) < 8.5$ "High mass range"
 - Background contamination < 4%
 - Valence-quark PDF region (Larger asymmetries)

 $H_a(P_a)$

- Target rest frame -

SINGLE-SPIN DRELL-YAN CROSS-SECTION

- ➤ In the QCD improved parton model at LO, the spin structure of the nucleon is parameterized in terms of 8 twist-2 TMD PDFs
- ➤ Each Twist-2 TMD PDFs depends on **the intrinsic transverse momentum k**_T of the interacting partons
- > Single-Spin DY cross-section:

$\frac{d\sigma}{dq^4d\Omega} \propto \hat{\sigma}_U \left\{ 1 + D_{[\sin 2\theta_{CS}]} A_U^{\cos \varphi_{CS}} \cos \varphi_{CS} + D_{[\sin^2 \theta_{CS}]} A_U^{\cos 2\varphi_{CS}} \cos 2\varphi_{CS} \right\}$
$+S_T \Big[D_{[1+\cos^2 heta_{CS}]} A_T^{\sin heta_S} \sin heta_S$
$+D_{\left[\sin^2 heta_{CS} ight]}\left(A_T^{\sin(2arphi_{CS}-arphi_S)}\sin(2arphi_{CS}-arphi_S)+A_T^{\sin(2arphi_{CS}+arphi_S)}\sin(2arphi_{CS}+arphi_S) ight)$
$+D_{\left[\sin 2 heta_{CS} ight]}\left(A_{T}^{\sin(arphi_{CS}-arphi_{S})}\sin(arphi_{CS}-arphi_{S})+A_{T}^{\sin(arphi_{CS}+arphi_{S})}\sin(arphi_{CS}+arphi_{S}) ight) ight] ight\},$

Nucleon Spin Polarization

	U	L	Т
U	\mathbf{f}_1 Number Density		$\mathbf{f}_{1\mathrm{T}}^{\mathrm{q}\perp}$ Sivers
L		g1L Helicity	g1T Worm-Gear T
Т	h1 ^{q⊥} Ø - Ø Boer-Mulders	$\mathbf{h}_{\mathbf{L}}^{\mathbf{q}\perp}$ Worm-Gear L	h_1^q $Transversity$ $h_{1T}^{q\perp}$ $Pretzelosity$

➤ Access to a convoluted TMD PDF information: $PDF_{target} \otimes PDF_{beam}$

Unpolarized Asymmetry

Quark Spin Polarization

Transverse Asymmetries (Twist-2)

Transverse Asymmetries (Subleading twist) Ongoing analysis)

NB: $D_{[f(\theta)]} = \frac{f(\theta)}{1 + A_U^1 cos^2 \theta}$ $A_U^1 \equiv F_U^1$ $A_{U,T}^{f(\phi_{CS},\phi_S)} = \frac{F_{U,T}^{f(\phi_{CS},\phi_S)}}{F_U^1 + F_U^2}$

Results as function of x_N, x_{\pi}, x_F q_T, M

- ➤ Compatible results between years
- Preliminary results for 2018 data(50% of available statistics)

UNPOLARIZED ABSOLUTE DRELL-YAN CROSS-SECTION

- Projected uncertainties:
 - Uncertainties on NH₃ data (compared with DYNNLO simulation)
 - Uncertainties for Tungsten data compared to E615 results and DYNNLO (beam energy independent)
- ➤ *Possible comparisons* with E615, NA10 experiments:
 - Both π + W, E615 compared for two bins in $\sqrt{\tau}$
- Aim at systematic uncertainties: σ_{sys} < 10%
 (Better compared to past experiments)

A-DEPENDENCE OF THE DY AND J/ψ CROSS-SECTIONS

- ➤ In the future, **A-dependence of the cross-sections:**
 - Polarized Target Cells: $NH_3 + LHe mix (A \sim 12)$
 - $Aluminum (A \sim 27)$
 - *Tungsten (A ~ 184)*
- Determination of the Nuclear Corrective Factor R^A of the PDF: (Eskola et al., Eur. Phys. J.C 1612.05741 (2017))

$$f_i^{p/A}(x, Q^2) = R_i^A(x, Q^2) f_i^p(x, Q^2),$$

Modified nPDF

Proton free PDF

> Study of the short-range mechanisms, non-perturbative effects, correlations with q_T , underlying J/ψ production

DOUBLE J/ψ PRODUCTION: PAST OBSERVATIONS

Double J/\psi production mechanisms

Intrisinc charm (IC)

<u>R. Vogt</u>, <u>S.J. Brodsky</u>, Phys.Lett.B349:569-575 (1995)

Single Parton Scattering

Double Parton Scattering

➤ First measurement done by NA3:

Phys.Lett.B, 114(6) (1982)

SPS/DPS ratio known with high uncertainties

Experiment	Energy (\sqrt{s})	Process	Cross-section $(\sigma_{J/\psi J/\psi})$
NA3	$16.8 \; \mathrm{GeV}$	$\pi^- N \to 2J/\psi + X$	$18 \pm 8 \text{ pb}$
NA3	$22.9~{\rm GeV}$	$\pi^- N \to 2J/\psi + X$	$30 \pm 10 \text{ pb}$
NA3	$27.4~{ m GeV}$	$pp \rightarrow 2J/\psi + X$	$27 \pm 10 \text{ pb}$

+ other measurements at collider energies

NA3 published results without acceptance correction.

DOUBLE J/ψ PRODUCTION AT COMPASS

- Measurement of the cross-section of double J/ψ production: Extracted cross-section values:
 - COMPASS results on different targets at fixed target energies
 - Direct comparison with NA3 results
- COMPASS data well describes the SPS+IC model
 - SPS appears to be a dominant mechanism
 - DPS expected to be strongly suppressed at fixed target energies

$$\left. \left(\frac{\sigma_{2J/\psi}}{\sigma_{J/\psi}} \right) \right|_{x_F > 0} = (1.1 \pm 0.3_{\text{stat}} \pm 0.2_{\text{sys}}).10^{-4}$$

$$\left. \sigma_{J/\psi J/\psi}(\text{NH}_3) \right|_{x_F > 0} = (8.8 \pm 2.2_{\text{stat}} \pm 2.4_{\text{sys}}) \frac{\text{pb}}{\text{nucleon}}$$

$$\sigma_{J/\psi J/\psi}(\mathrm{Al})\big|_{x_F>0} = (3.4 \pm 4.3_{\mathrm{stat}} \pm 5.8_{\mathrm{sys}})\frac{\mathrm{pb}}{\mathrm{nucleon}}$$

$$\sigma_{J/\psi J/\psi}(\mathrm{W})\big|_{x_F>0} = (14.3 \pm 7.7_{\mathrm{stat}} \pm 4.5_{\mathrm{sys}}) \frac{\mathrm{pb}}{\mathrm{nucleon}}$$

An upper limit for IC cross-section can be determined

SUMMARY & CONCLUSIONS

- ➤ COMPASS performed polarized Drell-Yan measurements in 2015 and 2018.
 - 2015 results were published.
 - 2018 preliminary results (50% of available statistics) are now also available.

TSA asymmetries:

- No clear trend observed for the DY TSAs, due to relatively large statistical uncertainties.
- The hypothesis of a sign change remains compatible with the observations.

Unpolarized studies in full swing:

- Measurement of absolute Drell-Yan cross-section on 3 different targets.
- A-dependence of the cross-section: Study of EMC effect, Energy loss, and Cronin effect.

Double J/\psi production:

- COMPASS has measured cross-section of the double J/ ψ production on different targets.
- COMPASS results compatible with SPS model: Intrinsic Charm contribution negligible.

Thank you, for your attention.

Backup Slides

THE COMPASS DRELL-YAN APPARATUS

- ➤ Comprising two dipole magnets: SM1, SM2
- ➤ Beam Telescope Station: SciFi detectors
- ➤ Tracking Detectors: (Large acceptance)
 - Approx. 350 detection plans (GEMs, SciFis, DCs, MWPCs, Pixelized MicroMegas, Straw Detector..)

Drell-Yan Features:

- Transversely Polarized Target (PT)
- **Hadron Absorber** downstream PT cryostat
- Aluminum and Tungsten **Nuclear Targets**

TARGET SETUP 2015

NUCLEAR DEPENDENCE OF DRELL-YAN

- ➤ **EMC Effect** Modification of quark and gluon distributions (PDF), in bounded nucleons by a nuclear environment (1983)
- ➤ Energy Loss Effect Of quarks in the pion beam while going across the nuclear target (a drop in the DY cross section at large x_F)
- Cronin Effect Nuclear enhancement of high-pT hadrons, due to multiple interactions in nuclear matter.

CORRELATION BETWEEN VARIABLES

BOER-MULDERS FUNCTION (WEIGHTED TSA)

- Extraction using weighted TSA method
- Preliminary results not fully estimated yet. Might be large uncertainties up to ~30%
- First moment of valence Boer-Mulders extracted with different pion PDF

 $x_{\pi}\;h_{1,\pi^{-}}^{\mathrm{L}(1)\overline{\mathrm{u}}}$

Figure 21: The extracted first transfunction of the pion.

Figure 22: The results obtained usverse moment of valence Boer–Mulders ing different pion PDF parametrisation.

SIVERS SIGN CHANGE

TMD-2 (2013)

P. Sun, F. Yuan, PRD88, 114012

0

-0.5

- Positive sign of these theoretical predictions, obtained using the sign-change hypothesis for Sivers TMD PDFs

0.5

WEIGHTED SIVERS TSA IN SIDIS AND DY

Projection from SIDIS under 3 assumptions:

(1)
$$A_T^{\sin\varphi_S\frac{q_T}{M_N}} \sim \frac{f_{1T,p}^{\perp u(1)}}{f_{1,p}^u}$$

- (2) No Q² evolution for Sivers Sivers sign-change
- (3) $f_{1T,p}^{\perp u}|_{SIDIS} = -f_{1T,p}^{\perp u}|_{DY}$

	STAR		PHENIX		RHIC II				
δA	y -0.5 0.5 1.5		20 GeV 0.09 0.06 0.11	y -1.8 0.0 1.8		20 GeV 0.2 0.13 0.2	y ± 2.5 ± 1.5 ± 0.5	$0.003 \\ 0.001$	20 GeV 0.03 0.01 0.01
$\int L \mathrm{d}t$	$125\mathrm{pb}^{-1}$		$125{ m pb}^{-1}$		$10 \times 125 \mathrm{pb^{-1}}$				

TABLE I: Statistical errors δA for the Sivers SSA in Drell Yan for the PHENIX and STAR detectors at RHIC: Errors are shown for dilepton masses of $Q=4~{\rm GeV}$ and 20 GeV assuming an integrated luminosity of $\int Ldt=125pb^{-1}$ and a beam polarization of P=0.7. Error estimates have been carried out using the event generator PYTHIA. Projected errors are also shown for a possible future dedicated experiment for transverse spin with large acceptance at RHIC II (luminosity upgrade); see text for details.

Talk from Oleg Eyser at CPHI (2019) Phys. Rev. Lett. 116, 132301 (2016)

-0.5

— KQ - no TMD evol.

EIKV - TMD evolved

-0.8 3.4% beam pol. uncertainty not shown

0.5

run 17 proj. (L=350pb⁻¹, P=55%)

3.4% beam pol. uncertainty not shown

— KQ - no TMD evol.

EIKV - TMD evolved

-0.6

0.5

DEPOLARIZATION FACTOR

➤ **Depolarization factor:** 5 to 10% variations

Assuming
$$A_T^{\sin \varphi_S} \approx \tilde{A}^{\sin \varphi_S}$$

$$\longrightarrow \hat{\sigma}_U = (F_U^1 + F_U^2) \left(1 + A_U^1 \cos^2 \theta_{CS} \right)$$

DILUTION FACTOR

➤ Dilution factor accounts for the fraction of polarisable material in the target:

$$f = \frac{n_H \sigma_{\pi - H}^{DY}}{n_H \sigma_{\pi - H}^{DY} + \Sigma_A n_A \sigma_{\pi - A}^{DY}}.$$

➤ Uncertainty off by 5%:

DOUBLE J/PSI: DPS/SPS RATIO

