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Spectrum of non-strange light Mesons

[Courtesy K. Götzen, GSI]

“Light-meson frontier”

Many states need con-
firmation in mass re-
gion m & 2 GeV/c2

Many wide states⇒
overlap and mixing

Identification of higher
excitations becomes
exceedingly difficult

Existence of multi-
quark, hybrid, or glue-
ball states is unclear

Main focus of current
COMPASS program
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Spectrum of non-strange light Mesons from Lattice QCD
State-of-the-Art Calculation with mπ = 391MeV/c2 Dudek et al., PRD 88 (2013) 094505

High towers of excited states; patter similar to quark-model

Additional hybrid-meson super-multiplet

Quasi-stable states⇒ no predictions for decay modes and widths
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Spectroscopy of strange Mesons
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0− 0+ 1− 1+ 2− 2+ 3− 3+ 4− 4+ 5−

[Courtesy S. Wallner, TUM]

PDG 2019: 25 kaon states below 3.1GeV/c2

Only 13 kaon states well established, 12 need confirmation

Many predicted quark-model states still missing

Some hints for supernumerous states
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Spectroscopy of strange Mesons
Little progress in the past

Many kaon states need confirmation

Most PDG entries more than 30 years old

Since 1990: 4 kaon states added to PDG (1 to summary table)

Kaon spectrum crucial to understand light-meson spectrum

Identify supernumerous states by completing SU(3)flavor multi-
plets

E.g. JP = 0+ nonet with a0(980), K∗0 (700) [or κ], f0(500) [or σ], and
f0(980) is hypothesized to be tetra-quark multiplet
K∗0 (700) still listed as “needs confirmation” by PDG

Kaon spectrum required to analyze heavy-meson decays

Search for CP violation in multi-body decays
e.g. B± → D0 K± with D0 → K0

S π+ π−

Amplitude analysis of Dalitz plot requires accurate knowledge of
resonances in K0

S π± (and π+ π−) subsystem
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How to produce excited kaon states?

Decays of heavy particles

τ leptons, charmed mesons, and charmonium states
⇒ limited mass reach

B meson decays⇒ description of large Dalitz plots difficult

Production experiments

E.g. diffractive production using high-energy kaon beam on
stationary target

Large cross section
Nearly all kaon states can appear as intermediate state X

P, R

K´
beam

target recoil

X´K´
beam

target recoil

K´
beam

target recoil

K´
beam

target recoil

h1
...
hn
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The COMPASS Experiment at the CERN SPS
Experimental Setup C. Adolph, NIMA 779 (2015) 69
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Fixed-target experiment

Two-stage spectrometer

Large acceptance over wide
kinematic range

Electromagnetic and hadronic
calorimeters

Beam and final-state particle ID
(CEDARs, RICH)



The COMPASS Experiment at the CERN SPS
Experimental Setup C. Adolph, NIMA 779 (2015) 69
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Fixed-target experiment

Two-stage spectrometer

Large acceptance over wide
kinematic range

Electromagnetic and hadronic
calorimeters

Beam and final-state particle ID
(CEDARs, RICH)

Meson spectroscopy 2008, 2009

190 GeV/c secondary hadron beam

h− beam: 97 % π−, 2 % K−, 1 % p

`H2 target



Diffractive Production of K−π−π+ at COMPASS

190GeV/c K− beam on p target
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Beam contains 2.4 % K−

720 000 events

Exclusivity ensured by measur-
ing recoil proton

0.1 < t′ < 1.0 (GeV/c)2

Potential resonance signals

Need partial-wave analysis
(PWA) to disentangle

Largest data sample so far

≈ 3.5× larger than WA03 sample
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Diffractive Production of K−π−π+ at COMPASS

190GeV/c K− beam on p target
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Diffractive Production of K−π−π+ at COMPASS

190GeV/c K− beam on p target
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Diffractive Production of K−π−π+ at COMPASS

190GeV/c K− beam on p target
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720 000 events
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Potential resonance signals

Need partial-wave analysis
(PWA) to disentangle

Largest data sample so far

≈ 3.5× larger than WA03 sample

WA03 (CERN):
200 000 events
0 < t′ < 0.7 (GeV/c)2

ACCMOR, NPB 187 (1981) 1
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Diffractive Production of K−π−π+ at COMPASS
Invariant Mass of π−π+ Subsystem

COMPASS: K−π−π+
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COMPASS, PRD 95 (2017) 032004

mπ−π+ spectrum contains states already known from analysis of
diffractively produced π−π−π+
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Diffractive Production of K−π−π+ at COMPASS
Invariant Mass of K−π+ Subsystem

COMPASS
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Partial-Wave Analysis of K−π−π+: Isobar Model
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JP of a resonance determines
angular distribution of daughter
particles

Analogy: multipole radiation in
classical electrodynamics

Determine JP of intermediate
resonances X− and ξ0 from mea-
sured angular distribution of
final-state particles
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Partial-Wave Analysis of K−π−π+: Isobar Model
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For mKππ = const, Kππ kinematic distribution is completely defined by:

JP Mε quantum numbers of X−

Orbital angular momentum L between ξ0 and bachelor π/K
Isobar resonance ξ0 ⇒model for mπ−π+/mK−π+ dependence of
amplitude

E.g. Breit-Wigner amplitudes for ρ(770)→ π−π+ and
K∗(892)→ K−π+

Partial wave: represents specific 5-dimensional kinematic distri-
bution
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Partial-Wave Analysis of K−π−π+
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PWA model: systematically constructed set of allowed waves

Spin J ≤ 7
Orbital angular momentum L ≤ 7
Positive naturality of the exchange particle
12 isobars:

[Kπ]Kπ
S , [Kπ]

Kη
S , K∗(892), K∗2 (1430), K∗3 (1780)

[ππ]S, f0(980), f0(1500), ρ(770), f2(1270), ρ3(1690)

⇒ “Wave pool” of 596 waves

Suppress insignificant waves by using regularization techniques
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Partial-Wave Analysis of K−π−π+

Example: 2+ 1+ K∗(892)π D Wave

COMPASS
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Clear signal from K∗2(1430)→ K∗(892)π

In agreement with WA03 result

Signal in COMPASS data much cleaner

Work in progress: resonance-model fit
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Partial-Wave Analysis of K−π−π+

Challenge: non-uniform Acceptance due to Particle ID
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Beam-particle ID via Cherenkov detectors (CEDARs)
Ca. 50×more π− than K− in beam

Final-state PID via RICH detector
Limited momentum range for K− or π− ID
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Partial-Wave Analysis of K−π−π+

Challenge: non-uniform Acceptance due to Particle ID
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Leakage effects in PWA

Caused by kinematic regions with acceptance ≈ 0

Loss of distinguishing power for some partial waves

Only small subset of waves affected
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Partial-Wave Analysis of K−π−π+

Challenge: non-uniform Acceptance due to Particle ID
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High-Precision Kaon Spectroscopy at AMBER

Goal: 10× world data

Using diffraction of high-energy kaon beam (as COMPASS)

> 107 K−π−π+ events

Current parameters of h− beam at SPS M2 beam line

Intensity: 5× 106 s−1 for approximately 10 s every 45 s
Composition: only 2 % K−

Intensity of kaon component: 105 s−1

Main limiting factor: low kaon fraction in beam

Need to increase intensity of kaons by at least factor 10

Solution: RF-separated beam
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RF-separated Kaon Beam at SPS M2 Beam Line
Panofsky-Schnell Method P. Bernard et al., CERN-1968-029

Kaon

Antiproton

Beam momentum limited by
length of beam line

Not an issue: diffractive
production depends only
weakly on energy

Estimated kaon intensity:
5× 106 s−1

More detailed studies needed
to determine beam parame-
ters more precisely

Requires major investment
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Requirements for AMBER Setup

Upgrade of beam PID⇒ improve rate capability and thermal
stability of CEDARs

High-resolution silicon beam telescope and vertex detector
Improve detection of target recoil particle

Ensures exclusivity of measured events

Extend kinematic coverage of final-state PID
Minimizes leakage effects in PWA
Provides access e.g. to K−K−K+ final state

Ensure efficient photon detection over broad kinematic range
Provides access to other interesting final states:
K−π0, K−π0π0, K−ω, K−η( ′), . . .

Work in progress

Detailed studies of experimental setup will start when beam
parameters are fixed
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Conclusions

Kaon spectroscopy

Many kaon states require further confirmation or more precise
measurement of their paramaters

COMPASS has already acquired the so far largest data sample
for K− + p→ K−π+π− + p (720 000 events)

AMBER

Goal: collect 10× world data using high-intensity RF-separated
kaon beam

Would correspond to > 107 K−π−π+ events
High physics potential: rewrite PDG for kaon states above
1.5 GeV/c2 (like LASS and WA03 did 30 year ago)
Pion component of beam could be used to study non-strange light
mesons in parallel

Requires experimental setup with uniform acceptance over wide
kinematic range including PID and electromagnetic calorimeters
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Outline

4 Backup slides
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Why do we need more data?
Example: π− + p→ π−π−π+ + precoil COMPASS, PRD 95 (2017) 032004
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Why do we need more data?
Example: π− + p→ π−π−π+ + precoil

Improved sensitivity for small
signals

E.g. surprising
find: resonance-like
a1(1420) signal in pe-
culiar decay mode

Only 0.3 % of total in-
tensity
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Why do we need more data?
Example: π− + p→ π−π−π+ + precoil

PWA in narrow bins of four-momentum transfer squared t′

Resolve t′ dependence of partial-wave amplitudes

Improved separation between resonant and nonresonant compo-
nents in resonance-model fits

First extraction of t′ spectra of resonances from such an analysis
⇒ can study production mechanism(s)
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Why do we need more data?
Example: π− + p→ π−π−π+ + precoil

Novel analysis technique
“freed-isobar” PWA [arXiv:1710.09849]
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Conventional PWA requires com-
plete knowledge of isobar amplitude

Novel approach: replace fixed
parametrization by step functions

Isobar amplitude determined from
data⇒ reduced model dependence
E.g. amplitude of π−π+ subsystem
with JPC = 0++

⇒ f0(500) (?), f0(980), f0(1500)
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Would allow to study
K−π+ subsystem with
JP = 0+ in K−π−π+

Requires huge data
samples
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