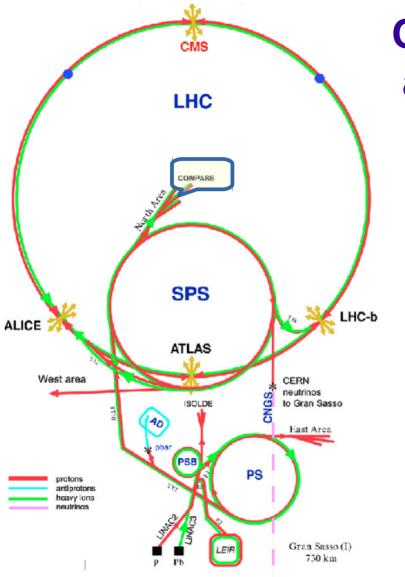
COMPASS++/AMBER Physics: preparing Phase-II

C. Quintans, LIP-Lisbon on behalf of the COMPASS++/AMBER interested community


by petescully, UrbanSketchers, Lisboa

- COMPASS++/AMBER experiment
- Pion structure
- Kaon structure
- Proton (spin)-structure
- Strange meson spectroscopy

COMPASS++/AMBER: a unique opportunity

The CERN-M2 beam line:

 μ^{\pm} beams and Hadron beams of both charges in a wide range of momenta and with high intensities

Possible <u>upgrade of the M2 beam line</u>: Using radio-frequency separation method, obtain kaon-enriched and antiproton-enriched beams

Physics possibilities

Program	Physics Goals	Beam Energy [GeV]	Beam Intensity [s ⁻¹]	Trigger Rate [kHz]	Beam Type	Target	Earliest start time, duration	Hardware additions	
muon-proton elastic scattering	Precision proton-radius measurement	100	$4 \cdot 10^6$	100	μ^{\pm}	high- pressure H2	2022 1 year	active TPC, SciFi trigger, silicon veto,	
Hard exclusive reactions	GPD E	160	$2 \cdot 10^7$	10	μ^{\pm}	NH_3^\uparrow	2022 2 years	recoil silicon, modified polarised target magnet	
Input for Dark Matter Search	\overline{p} production cross section	20-280	$5 \cdot 10^5$	25	р	LH2, LHe	2022 1 month	liquid helium target	7
\overline{p} -induced spectroscopy	Heavy quark exotics	12, 20	$5 \cdot 10^7$	25	\overline{p}	LH2	2022 2 years	target spectrometer: tracking, calorimetry	
Drell-Yan	Pion PDFs	190	$7 \cdot 10^7$	25	π^{\pm}	C/W	2022 1-2 years		J
Drell-Yan (RF)	Kaon PDFs & Nucleon TMDs	~100	10 ⁸	25-50	K^{\pm}, \overline{p}	$NH_3^{\uparrow}, C/W$	2026 2-3 years	"active absorber", vertex detector)
Primakoff (RF)	Kaon polarisa- bility & pion life time	~100	$5 \cdot 10^6$	> 10	K ⁻	Ni	non-exclusive 2026 1 year		
Prompt Photons (RF)	Meson gluon PDFs	≥ 100	$5 \cdot 10^6$	10-100	$rac{K^{\pm}}{\pi^{\pm}}$	LH2, Ni	non-exclusive 2026 1-2 years	hodoscope	}
K-induced Spectroscopy (RF)	High-precision strange-meson spectrum	50-100	$5 \cdot 10^6$	25	<i>K</i> ⁻	LH2	2026 1 year	recoil TOF, forward PID	
Vector mesons (RF)	Spin Density Matrix Elements	50-100	$5 \cdot 10^6$	10-100	K^{\pm}, π^{\pm}	from H to Pb	2026 1 year		J

...as expressed in the COMPASS++/AMBER LoI: https://arxiv.org/pdf/1808.00848.pdf

Phase-I

COMPASS++/AMBER Proposal Phase-I: http://cds.cern.ch/record/2676885?In=pt

Phase-II

Emergence of hadron mass

- leitmotiv for the various proposed measurements
- key for understanding QCD
- Pion plays a major role: lightest hadron, Nambu-Goldstone boson of the theory
- Kaon is a "window" to the interference region between Higgs mechanism and EHM mechanism

Several theory approaches address the issue of **pion and kaon structure**

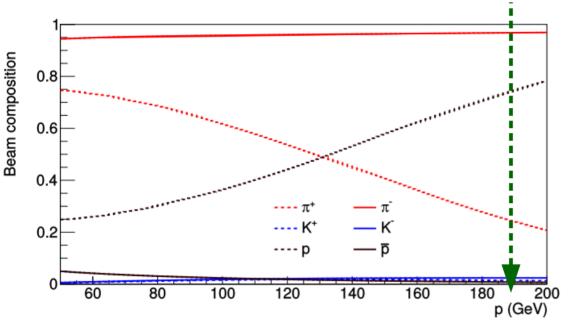
But, what do we know from experimental measurements?

Experimental access to pion structure

pion-induced Drell-Yan

At JLab12, EIC, ...

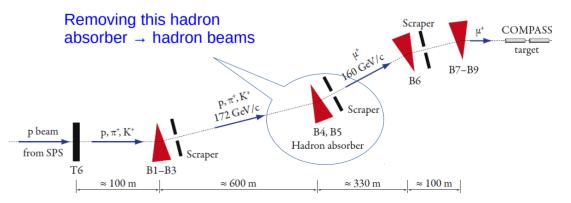
- Sullivan process
- prompt-photon production (induced by pion beam)
- charmonium production (induced by pion beam)
- pion diffractive scattering



COMPASS++/

AMBER

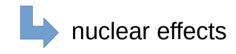
Conventional hadron beams



At 190 GeV/c:

- Negative: 97% π beam
- Positive: 24% π^+ beam

Maximize Drell-Yan statistics by having high beam momentum


The same beam line can provide hadron or muon beams

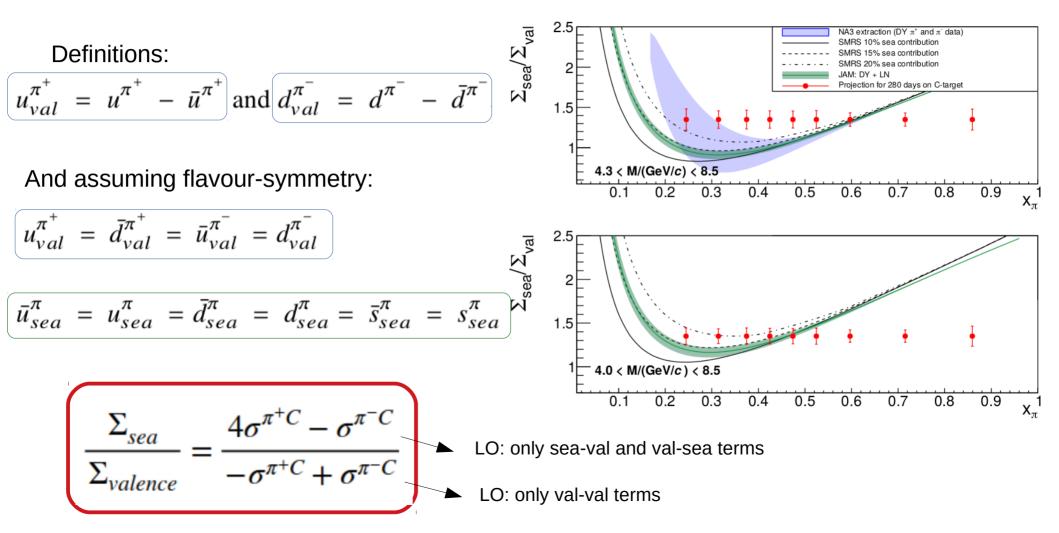
Pion-induced Drell-Yan

Table 7: Statistics collected by earlier experiments (top rows), compared with the achievable statistics of the proposed experiment (bottom rows), in 213 days (π^+ beam) + 67 days (π^- beam).

Mostly heavy target

- Some did not publish cross-sections
- Some did not measure with both beam charges

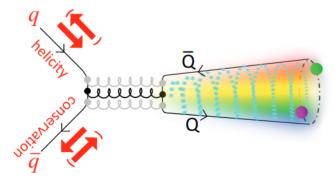
Isoscalar target

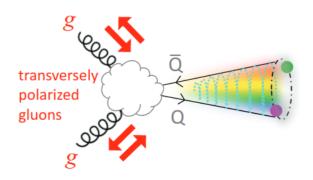

High statistics

Both beam charges

no sea/valence separation

DY mass (GeV/c^2) DY events Experiment Target type Beam energy (GeV) Beam type Beam intensity (part/sec) 17.6×10^{7} π^+ 5000 E615 20 cm W 252 4.05 - 8.55 18.6×10^{7} π^{-} 30000 π^+ 2.0×10^{7} 40 $30 \,\mathrm{cm} \,\mathrm{H}_2$ 200 4.1 - 8.5 π^{-} 3.0×10^{7} 121 NA3 π^+ 2.0×10^{7} 1767 4.2 - 8.56 cm Pt 200 3.0×10^{7} π^{-} 4961 4.2 - 8.57800 286 π^{-} 65×10^{7} $120 \,\mathrm{cm}\,\mathrm{D}_2$ 4.35 - 8.5140 3200 NA10 286 4.2 - 8.549600 12 cm W 194 π^{-} 65×10^{7} 4.07 - 8.5155000 140 4.35 - 8.529300 COMPASS 2015 35000 π^{-} 7.0×10^{7} 110 cm NH₂ 190 4.3 - 8.5COMPASS 2018 52000 21700 4.3 - 8.5 π^+ 190 1.7×10^{7} 4.0 - 8.531000 75 cm C 4.3 - 8.567000 COMPASS++/ 190 6.8×10^{7} π^{-} 4.0 - 8.591100 AMBER 4.3 - 8.58300 π^+ 0.4×10^{7} 190 4.0 - 8.511700 12 cm W 4.3 - 8.524100 π^{-} 190 1.6×10^{7} 4.0 - 8.532100

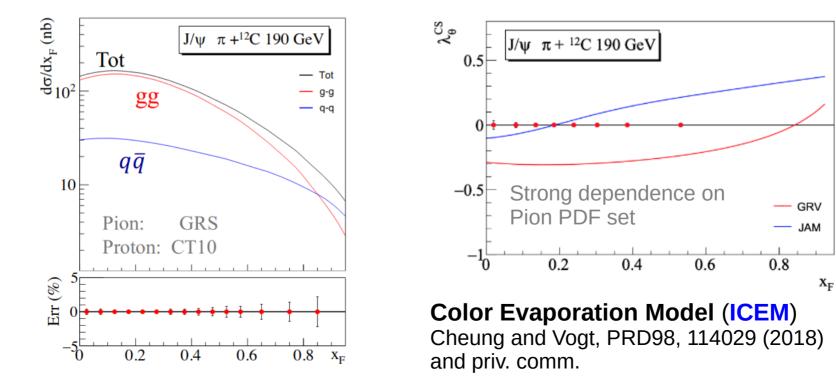

Drell-Yan: experimental access to pion structure



Gluon content of the pion what can we learn from J/ψ production?

At COMPASS++/AMBER Phase-I:

- Large statistics on J/ψ production at dimuon channel
- Inclusive: due to the hadron absorber, we cannot distinguish prompt production from the rest
- In the low-pT regime, not described by NRQCD
- Expected significant feed-down: $\psi(2S)$, χ_{c1} , χ_{c2}
- Expected to have dominant contribution from $2 \rightarrow 1$ processes



J/ψ production

The "naïve" picture:

J/ ψ polarization, together with p_{τ} and x_{F} behavior, will tell us about the dominant production mechanism

- If gluon-gluon fusion dominates, expect J/ψ longitudinal polarization
- If quark-antiquark annihilation dominates, expect J/ψ transverse polarization

Puzzling quarkonium results

P. Faccioli et al, EPJ C80 (2020) 623

Understanding Quarkonium production mechanisms remains challenging:

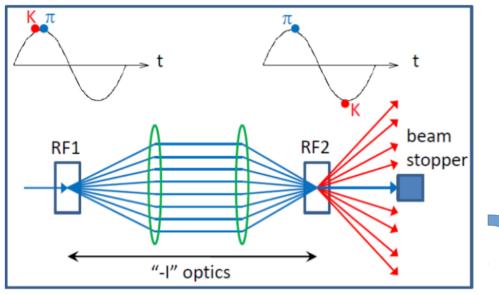
At the large- p_{τ} regime of LHC experiments, all produced $c\bar{c}$ states follow a simple p_{τ}/M scaling. But while J/ ψ , ψ (2S) and Υ are unpolarized, χ_{c1} and χ_{c2} are transversely and longitudinally polarized, as expected.

NRQCD model is able to describe these results, but only with a very specific linear combination of the octet terms...

How likely is this to happen? And what happens at $low-p_{\tau}$?

NRQCD LDMEs are not tuned for $low-p_{T}$ – and nor COMPASS, nor AMBER Phase-I data will allow to do it

Inclusive J/ψ measurements – Phase I


- We need to learn about J/ψ production mechanisms first
- Measurements in the low- p_{τ} regime are missing
- $\psi(2S)$ may be very relevant, as it has no feed-down contributions

COMPASS++/AMBER: large statistics, differential cross-section measurements, mostly to learn about quarkonia production mechanisms

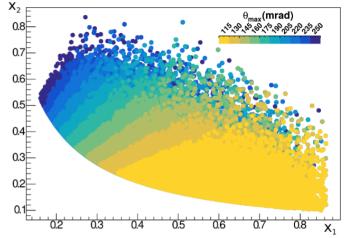
Assessing the gluon content in the pion from this: likely to come only later, with AMBER Phase II

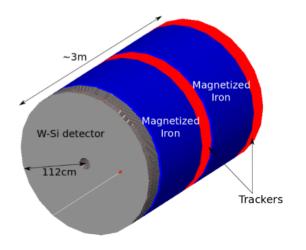
Experiment	Target type	Beam energy (GeV)	Beam type	J/ψ events
		150	$\pi^{_}$	601000
NA3 [76]	Pt	280	π^{-}	511000
		200	π^+	131000
		200	π^{-}	105000
E780 [120, 120]	Cu			200000
E789 [129, 130]	Au	800	р	110000
	Be			45000
	Be			
E866 [131]	Fe	800	р	3000000
	Cu			
	Be		р	124700
	Al	450		100700
NA50 [132]	Cu			130600
	Ag			132100
	W			78100
NA51 [133]	р	450		301000
NA51 [155]	d	450	р	312000
HERA-B [134]	С	920	р	152000
COMPASS 2015	110 111	100	_	1000000
COMPASS 2018	110 cm NH ₃	190	π^{-}	1500000
			π^+	1200000
	75 cm C	190	π^{-}	1800000
COMPASS++/			р	1500000
AMBER			π^+	500000
	12 cm W	190	π^{-}	700000
			р	700000

COMPASS++/AMBER PHASE II

- K^{\pm} beams with 60 100 GeV/c
- p beam with 80 110 GeV/c

in both cases with some contamination from pions and muons Radio-frequency separation is a technique where some particle species end dumped in a beam stopper, while the chosen ones (dependent on distance "I") provide a cleaner, still highly intense, beam.

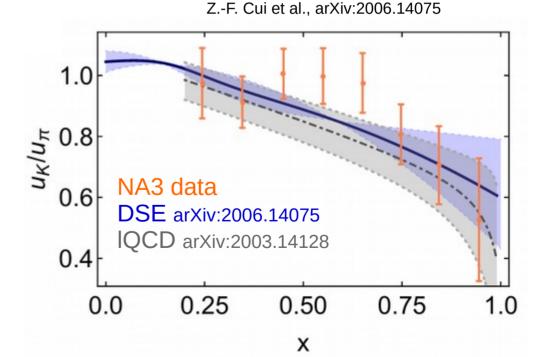

R&D from CERN Beams Department



(Another) unique opportunity!

COMPASS++/AMBER PHASE II

- Lower beam energies → compressed spectrometer, in order to keep large angular acceptance (~40%)
- Active magnetized "absorber" → a calorimeter-like detector, under magnetic field and with high granularity, for muon pairs tracking and momentum measurement
- And what about a "pre-shower" detector, for dielectron measurement (...?)


Kaon structure: u_{κ}/u_{π}

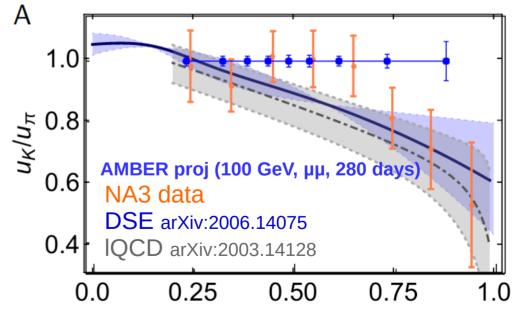
Kaon structure: a window to the region of interference between Higgs mechanism and EHM mechanism.

The only available experimental data: NA3 \rightarrow 200 GeV K⁻ beam on 6 cm Pt target

700 kaon-induced Drell-Yan events

Kaon structure: u_{κ}/u_{π}

Kaon structure: a window to the region of interference between Higgs mechanism and EHM mechanism.

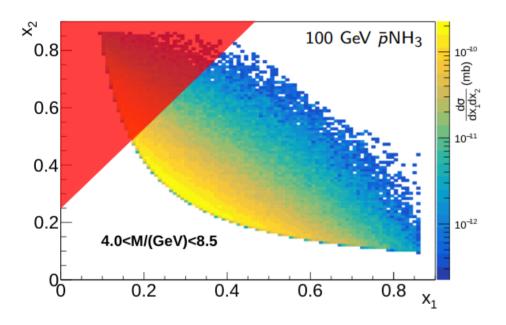

The only available experimental data: NA3 \rightarrow 200 GeV K⁻ beam on 6 cm Pt target

700 kaon-induced Drell-Yan events

AMBER kaoninduced Drell-Yan

Kaon structure: valence and sea

Sea-valence separation:


$$\Sigma_{val} = \sigma^{K^-A} - \sigma^{K^+A}$$

 $R_{s/v} = \sigma^{K^+A} / \Sigma_{val}$

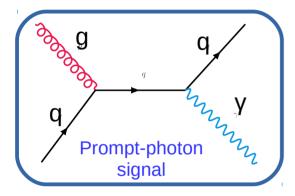
Experiment	Target type	Beam type	Beam intensity (part/sec)	Beam energy (GeV)	DY mass (GeV/c ²)	DY e $\mu^+\mu^-$	vents e^+e^-
NA3	6cm Pt	K-	????	200	4.2 - 8.5	700	0
COMPASS++/ AMBER	100cm C	K-	$2.1 imes 10^7$	80 100	4.0 - 8.5 4.0 - 8.5	25,000 40,000	13,700 17,700
		K ⁺	$2.1 imes 10^7$	80 100	4.0 - 8.5 4.0 - 8.5	2,800 5,200	1,300 2,000
COMPASS++/ AMBER	100cm C	π^-	$4.8 imes 10^7$	80 100	4.0 - 8.5 4.0 - 8.5	65,500 95,500	29,700 36,000

p-induced Drell-Yan: proton TMD PDFs

On a transversely polarized target: back to the TMD PDFs of the nucleon

• No dependence on PDFs of pion

reduced systematics in accessing the proton spin structure


- Valence region: large x_{beam}

Access to the Boer-Mulders TMD PDF:

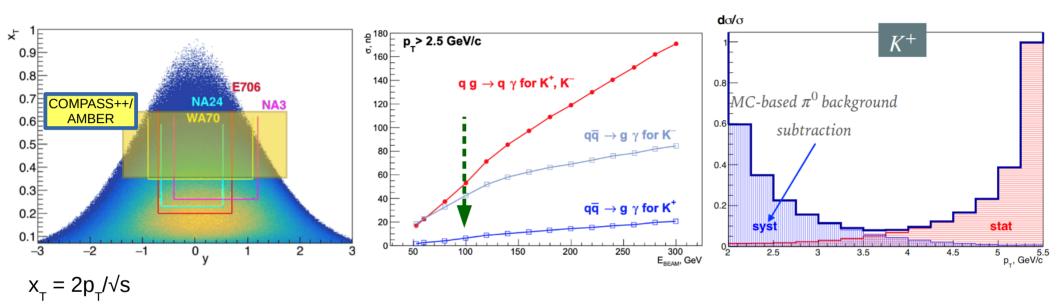
 $egin{aligned} &A^{\cos\left(2\phi
ight)}_{UU}\propto h^{\perp q}_{1,h}\otimes h^{\perp q}_{1,p}\ &A^{\sin\left(2\phi-\phi_{S}
ight)}_{UT}\propto h^{\perp q}_{1,h}\otimes h^{q}_{1,p} \end{aligned}$

Experiment	Target type	Beam type	Beam intensity (part/sec)	Beam energy (GeV)	DY mass (GeV/c²)	$\begin{array}{c} {\sf DY \ events} \\ \mu^+\mu^- e^+e^- \end{array}$	
COMPASS++/ AMBER	110cm NH_3	Þ	3.5×10^7	100 120	4.0 - 8.5 4.0 - 8.5	28,000 40,000	21,000 27,300

Kaon-induced prompt-photon production and the Gluon content in the kaon

Direct access to the gluon PDF at $x_g^{\kappa} > 0.05, Q^2 \sim p_T$

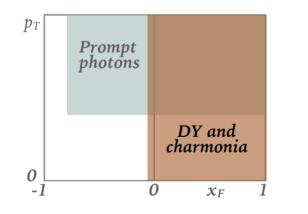
background K⁺ beam: minimize bkg


Minimum bias photons background

p₇^v>2.5 GeV/c: minimize photon background

100 GeV K^{+} beam on a long IH, target

Kaon-induced prompt-photon production

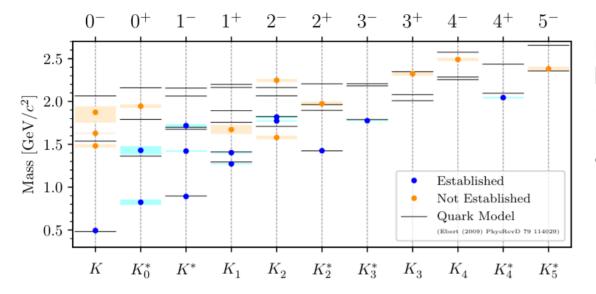

In 140 davs

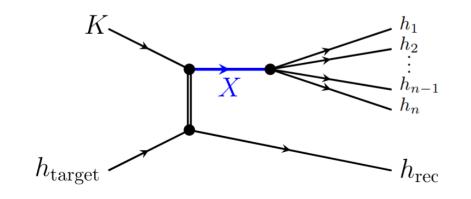
Experiment	Target type	Beam type	Beam Intensity (part/sec)	Beam Energy (GeV)	$\int \mathcal{L}$ (pb^{-1})	p_T range (GeV/c)	prompt-photon events
WA70	$1 \mathrm{m} \ \mathrm{lH}_2$	π^+ π^-	$\begin{array}{c} 2.5\times10^6\\ 1.25\times10^7\end{array}$	280 280	$1.3 \\ 3.5$	$\begin{array}{l} 4 < p_T < 7 \\ 4 < p_T < 7 \end{array}$	
COMPASS++/ AMBER	$2m \ lH_2$	K^+ π^+	$\begin{array}{c} 2\times10^7\\ 2\times10^7\end{array}$	100 100	50 50	$p_T > 2.5$ $p_T > 2.5$	$\begin{array}{c} 3.4\times10^6\\ 3.4\times10^6\end{array}$

Charmonium production and the gluon content in the kaon

Both the **Drell-Yan setup** and the **prompt-photon production setup** will provide significant statistics of charmonium samples

- No absorber: distinguish prompt from non-prompt production
- Possibility to detect accompanying photon: access to χ_{c1} , χ_{c2}
- Improved resolution: separate J/ψ from $\psi(2S)$




A thorough study of charmonium production mechanisms at low- p_{T} , via x_{F} and polarization information from the different states

A complementary input to the knowledge of gluon PDF in the kaon

Kaon beam: an opportunity for strange-meson spectroscopy

From the 25 strange mesons listed presently in the PDG, 13 still need experimental confirmation:

- 3 predicted K^*_{j} states missing. Searches via $K^{\pm}p$ scattering, like $K^{\pm}p \rightarrow K\pi n$ or through heavy meson and τ decays
- 11 predicted K_j states missing.
 Searches via heavy meson and τ decays to multi-body final states

X: strange-meson Searched for and characterized with Partial Wave Analysis

Strange-meson spectroscopy with RF-separated kaon beam

COMPASS: the World's largest dataset of diffractively produced $K^{\text{-}}\pi^{\text{-}}\pi^{\text{+}}$

Observation of many well-known states, and also potential signals from excited states

With a RF-separated kaon beam:

- At least 10 times larger statistics
- Strange-meson spectrum detailed studies, reaching the same precision as for light non-strange mesons
- Use of advanced methods, that require large statistics, broad kinematic coverage and excellent beam and final state PID.

Summary

 COMPASS++/AMBER Phase-I was recommended for approval on 13th October 2020

- A broad physics program dedicated to the Emergence of Hadron Mass and related topics
- An ambitious Phase-II program is being planned, making use of novel RF-separated beams
- Experimentally challenging: intense hadron beams into fixed target, large kinematic coverage, good momentum and position resolutions and excellent PID required.
- Phase-II proposal must be anchored on solid theory fundament:

