

TMD observables in unpolarized SIDIS at COMPASS

Andrea Moretti

on behalf of the COMPASS Collaboration

Content of this talk

- Unpolarized SIDIS cross section
- TMD observables and COMPASS contributions
- Preliminary results from 2016 data taking
- Conclusions

Cross section for unpolarized SIDIS

SIDIS differential cross section for the production of a hadron *h* on an unpolarized nucleon target:

$$\frac{d\sigma}{dx\,dy\,dz\,d\varphi_h dP_{hT}^2} = \frac{2\pi\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \\ \cdot \left(F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} F_{UU}^{\cos\varphi_h} \cos\varphi_h + \varepsilon F_{UU}^{\cos2\varphi_h} \cos2\varphi_h + \lambda_l \sqrt{2\varepsilon(1-\varepsilon)} F_{LU}^{\sin\varphi_h} \sin\varphi_h\right)$$

- x, y and Q^2 are the usual DIS variables,
- $\gamma = 2Mx/Q$
- *z* is the fraction of photon energy carried by the hadron
- φ_h its azimuthal angle in the Gamma Nucleon System
- P_{hT}^2 its transverse momentum squared wrt the photon
- $\varepsilon = \frac{1-y-\frac{1}{4}\gamma^2 y^2}{1-y+\frac{1}{2}y^2+\frac{1}{4}\gamma^2 y^2}$ is a kinematic factor
- λ_l is the beam polarization.

Cross section for unpolarized SIDIS

COMPASS

SIDIS differential cross section for the production of a hadron *h* on an unpolarized nucleon target:

$$\frac{d\sigma}{dx\,dy\,dz\,d\varphi_h dP_{hT}^2} = \frac{2\pi\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \\ \cdot \left(F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} F_{UU}^{\cos\varphi_h} \cos\varphi_h + \varepsilon F_{UU}^{\cos2\varphi_h} \cos2\varphi_h + \lambda_l \sqrt{2\varepsilon(1-\varepsilon)} F_{LU}^{\sin\varphi_h} \sin\varphi_h\right)$$

- x, y and Q^2 are the usual DIS variables,
- $\gamma = 2Mx/Q$
- *z* is the fraction of photon energy carried by the hadron
- φ_h its azimuthal angle in the Gamma Nucleon System
- P_{hT}^2 its transverse momentum squared wrt the photon
- $\varepsilon = \frac{1 y \frac{1}{4}\gamma^2 y^2}{1 y + \frac{1}{2}y^2 + \frac{1}{4}\gamma^2 y^2}$ is a kinematic factor
- λ_l is the beam polarization.

These structure functions have an expression in terms of TMDs.

Structure functions and observables

Retaining the most interesting terms, in Wandzura-Wilczek approximation, up to 1/Q:

Independent information on p_T from e^+e^- annihilation.

The symbol C denotes the convolution over the unobservable momenta , \vec{k}_T and \vec{p}_T :

$$C[wfD] = x \sum_{a} e_{a}^{2} \int d^{2} \vec{k}_{T} \int d^{2} \vec{p}_{T} \delta^{2} (\vec{P}_{hT} - z\vec{k}_{T} - \vec{p}_{T}) w(\vec{k}_{T}, \vec{p}_{T}) f^{a}(x, \vec{k}_{T}) D^{a}(z, \vec{p}_{T})$$

$$\hat{h} = \vec{P}_{hT} / |\vec{P}_{hT}|$$

$$Y^{*} \bigvee_{q} V^{*} \bigvee_{k_{T}} P$$
proton

COMPASS

Transverse momentum dependent multiplicities are defined as the ratio of the SIDIS - and the DIS cross sections:

$$\frac{d^2 \mathcal{M}^h(x, Q^2; z, P_{hT}^2)}{dz \, dP_{hT}^2} = \frac{d^4 \sigma^{\ell p \to \ell' h \, X}}{dx \, dQ^2 dz \, dP_{hT}^2} \,/ \, \frac{d^2 \sigma}{dx \, dQ^2} = \frac{\mathcal{C}[f_1 D_1]}{\sum_q e_q^2 f_1}$$

In gaussian approximation and for small values of P_{hT} , where $\langle P_{hT}^2 \rangle = z^2 \langle k_T^2 \rangle + \langle p_T^2 \rangle$ is expected to hold,

$$\frac{d^2 \mathcal{M}^h \left(x, Q^2; z, P_{hT}^2 \right)}{dz \, dP_{hT}^2} = \frac{N}{\langle P_{hT}^2 \rangle} \exp \left(- \frac{P_{hT}^2}{\langle P_{hT}^2 \rangle} \right)$$

 P_{hT}^2 -multiplicities on deuteron data collected in 2004 and 2006 with a transversely polarized deuteron target

Just an example, from COMPASS: Multiplicities as a function of P_{hT}^2 , in bins of x and Q^2 ,

for a given $z \operatorname{bin} (0.2 < z < 0.3)$

Systematic uncertainty mainly from: acceptance correction diffractive vector mesons contribution Generally 5% to 7%

Transverse momentum dependent multiplicities are defined as the ratio of the SIDIS - and the DIS cross sections:

$$\frac{d^2 \mathcal{M}^h(x,Q^2;z,P_{hT}^2)}{dz \, dP_{hT}^2} = \frac{d^4 \sigma^{\ell p \to \ell' h \, X}}{dx \, dQ^2 dz \, dP_{hT}^2} \,/ \, \frac{d^2 \sigma}{dx \, dQ^2} = \frac{\mathcal{C}[f_1 D_1]}{\sum_q e_q^2 f_1}$$

In gaussian approximation and for small values of P_{hT} , where $\langle P_{hT}^2 \rangle = z^2 \langle k_T^2 \rangle + \langle p_T^2 \rangle$ is expected to hold,

$$\frac{d^2 \mathcal{M}^h(x, Q^2; z, P_{hT}^2)}{dz \, dP_{hT}^2} = \frac{N}{\langle P_{hT}^2 \rangle} \exp\left(-\frac{P_{hT}^2}{\langle P_{hT}^2 \rangle}\right)$$

 P_{hT}^2 -multiplicities on deuteron data collected in 2004 and 2006 with a transversely polarized deuteron target

Test of the gaussian approximation

 $\langle P_{hT}^2 \rangle$ as obtained from the fit of the multiplicities with a single exponential, for $0.02 < P_{hT}^2 < 0.72$ Expected linear trend wrt z^2 .

A lot of work

on both the experimental side and theoretical side to describe the data

Azimuthal asymmetries

As for the azimuthal asymmetries of hadrons produced in SIDIS, recent results come from COMPASS, HERMES, JLAB

azimuthal asymmetries on deuteron data collected in 2004 and 2006 with a transversely polarized deuteron target

Here, COMPASS results for the $cos \ \varphi_h$ asymmetry as a function of x, z and P_{hT} (1D-analysis) + simultaneous binning in the three variables (3D-analysis)

[COMPASS, Nucl. Phys. B 886 (2014)]

Azimuthal asymmetries

As for the azimuthal asymmetries of hadrons produced in SIDIS, recent results come from COMPASS, HERMES, JLAB

azimuthal asymmetries on deuteron data collected in 2004 and 2006 with a transversely polarized deuteron target

Here, COMPASS results for the $cos 2\varphi_h$ asymmetry as a function of x, z and P_{hT} (1D-analysis) + simultaneous binning in the three variables (3D-analysis)

Strong kinematic dependences: hard to describe
 Several attempts to extract h[⊥]₁: not conclusive.

[COMPASS, Nucl. Phys. B 886 (2014)]

COMPASS

A fraction of the hadrons selected for the SIDIS analyses comes from the decay of **diffractively produced vector mesons (DVM)**.

The two most important channels are:

$$\rho^{0} \to \pi^{+}\pi^{-}$$
$$\phi \to K^{+}K^{-}$$

Such exclusive events/hadrons contribute to the measured multiplicities. Estimation done in COMPASS based on Monte Carlo (LEPTO for SIDIS, HEPGEN for DVM).

Correction to the number of reconstructed DIS events, as a function of x, per Q^2 bin

$$C^{DIS} = \frac{N^{DIS}}{N^{DIS} + N^{DVM}}$$

[COMPASS, Phys. Rev. D 97, 032006 (2018)]

Fraction of pions from SIDIS, as a function of P_{hT}^2 per *z* bin

$$f_{\pi}^{\rho^{0}} = \frac{N_{\pi}^{\rho^{0}}}{N_{\pi}^{SIDIS} + N_{\pi}^{\rho^{0}}}$$

Fraction of kaons from SIDIS, as a function of P_{hT}^2 per *z* bin

$$f_K^{\phi} = \frac{N_K^{\phi}}{N_K^{SIDIS} + N_K^{\phi}}$$

10

Recently, it has been demonstrated that such diffractive production mechanism has a **sizable impact on the measured azimuthal**

asymmetries as well. [COMPASS, arXiv:1912.10322)]

- The spin density matrix of the virtual photon is "transferred" to the vector meson, and then to the final state hadron.
- This can induce a modulation in φ_h .
- The target proton is almost kept intact: the process is exclusive
- Analysis performed on 2006 deuteron data Same conditions as for published results, Monte Carlo available
- Selection of exclusive events with
 - exactly 2 hadrons
 - with opposite charge
 - $z_{h^+} + z_{h^-} = z_t > 0.95$
- Subtraction of asymmetries.

Diffractive production of vector mesons and subsequent decay into two hadrons (sketch)

[COMPASS, arXiv:1912.10322)]

Fraction *r* **of exclusive hadrons** in the same 3D binning and using the same Monte Carlo results as for published results.

Summary plot

from left to right, for $0.1 < p_T^h/(\text{GeV}/c) < 0.3$ and for the $\cos \varphi_h$ asymmetry,

- 1. Amplitude $a_{\cos \varphi_h}^{UU,excl}$ of the azimuthal modulation for exclusive hadrons
- 2. Size of the correction to the published asymmetries $ra_{\cos \varphi_h}^{UU,excl}$
- 3. Comparison of published (open points) and corrected (close points) asymmetries for positive hadrons.

$$A_{\cos\varphi_h}^{UU} = \frac{A_{\cos\varphi_h}^{UU,publ} - ra_{\cos\varphi_h}^{UU,excl}}{1 - r}$$

Fraction *r* **of exclusive hadrons** in the same 3D binning and using the same Monte Carlo results as for published results.

3D azimuthal asymmetries after subtraction of the exclusive contribution

$$A_{\cos\varphi_h}^{UU} = \frac{A_{\cos\varphi_h}^{UU,publ} - ra_{\cos\varphi_h}^{UU,excl}}{1 - r}$$

Fraction *r* **of exclusive hadrons** in the same 3D binning and using the same Monte Carlo results as for published results.

3D azimuthal asymmetries after subtraction of the exclusive contribution

$$A_{\cos 2\varphi_h}^{UU} = \frac{A_{\cos 2\varphi_h}^{UU,publ} - ra_{\cos 2\varphi_h}^{UU,excl}}{1 - r}$$

The 2016/2017 COMPASS runs

In 2016/2017 new SIDIS data have been collected in COMPASS, with:

- 160 GeV/c μ beam (μ^+ and μ^- with balanced statistics)
- Unpolarized, liquid hydrogen target

In this talk: preliminary results for TMD observables

Here: a selection of kinematic distributions $(x - Q^2 \text{ coverage}, x, z, P_{hT})$

PRELIMINARY RESULTS FROM THE 2016 RUN P_{hT}^2 -dependent multiplicities ~10% of the available statistics.

PRELIMINARY RESULTS FROM THE 2016 RUN P_{hT}^2 -dependent multiplicities ~10% of the available statistics.

PRELIMINARY RESULTS FROM THE 2016 RUN Azimuthal asymmetries ~4% of the available statistics.

- The strong kinematic dependences, already observed on deuteron, are confirmed
- Small statistical uncertainties
- Systematics expected at the level of statistical uncertainty

Diffractive vector mesons contamination

We are working on a **refined method** to estimate – and subtract the contribution to the hadron sample coming from the decay of diffractive vector mesons.

- The method does not require a precise knowledge of the diffractive cross section.
- It is based on the exclusive events observed in data.
- Here, for example, the missing energy peak for all the events where exactly **2 hadrons with opposite charge** were reconstructed.
 - 1. The 2h E_{miss} peak is used to normalize the HEPGEN Monte Carlo to the data
 - 2. If both hadrons are reconstructed in the data, the exclusive event can be removed with kinematic cuts
 - **3. If only one hadron is reconstructed in the** data, the leftover contamination can be obtained from Monte Carlo.

COMPASS preliminary

Diffractive vector mesons contamination

We are working on a **refined method** to estimate – and subtract the contribution to the hadron sample coming from the decay of diffractive vector mesons.

- The method does not require a precise knowledge of the diffractive cross section,
- It is based on the exclusive events observed in data
- Here, for example, the missing energy peak for all the events where exactly **2 hadrons with opposite charge** were reconstructed.
 - 1. The 2h E_{miss} peak is used to normalize the HEPGEN Monte Carlo to the data
 - 2. If both hadrons are reconstructed in the data, the exclusive event can be removed with kinematic cuts
 - **3. If only one hadron is reconstructed in the** data, the leftover contamination can be obtained from Monte Carlo.

SDME's in HEPGEN Monte Carlo

- The azimuthal modulations of decay hadrons are implemented in the Monte Carlo via the *Spin Density Matrix Elements* (SDME's), measured in COMPASS
- The data Monte Carlo agreement for raw 2h "asymmetries" is satisfactory.

COMPASS preliminary

21

COMPASS

- Two observables in unpolarized SIDIS are particularly interesting for the TMD physics: **transverse momentum dependent multiplicities** and **azimuthal asymmetries**.
- Both have seen and are seeing a deep investigation both experimentally and theoretically.
- After addressing these topics with a deuteron target, the COMPASS Collaboration is working on the analysis of the proton data collected in 2016 and 2017.
- Promising preliminary results have been shown for both the considered observables.
- A new method for the subtraction of events from diffractive production of vector mesons is used
- Analysis in a multi dimensional space of variables (including q_T , rapidity ...) ongoing
- A challenging analysis, but we think of great impact for the TMD physics.

backup

PROJECTION OF STATISTICAL UNCERTAINTIES Projection for the 1D asymmetries (full target length)

Systematic uncertainties on the published results: ~2 x statistical uncertainty expected for the new results: ~1 x statistical uncertainty

PROJECTION OF STATISTICAL UNCERTAINTIES Projection for the 3D asymmetries (full target length)

COMPASS

• COMPARISON WITH PUBLISHED DEUTERON for the $cos \phi_h$ asymmetry

PROJECTION OF STATISTICAL UNCERTAINTIES Projection for the 4D asymmetries (full target length)

• $cos \phi_h$ asymmetry in the first z bin (0. 2 < z < 0. 3) $Q^2(\text{GeV}^2/c^2)$

