π and K SIDIS multiplicities, p/p and K⁻/K⁺ ratios at large z measured at COMPASS

Fabienne KUNNE CEA /IRFU Saclay, France

On behalf of COMPASS Collaboration

CPHI-20, CERN, Geneva, Feb.3-7, 2020

COmmon Muon Proton Apparatus for Structure and Spectroscopy

~240 physicists, 13 countries, 25 institutions

Fixed target experiment, multi-purpose set-up. Secondary ~200 GeV muon and hadron beams from CERN SPS Various targets

Motivation

Longitudinal spin- Impact of FF on Δs extraction

 Δs extraction from SIDIS depends on value of D_s^K fragmentation function.

Most Δs extractions from SIDIS used the old DSS value for R_{SF} . Could be revisited.

Quark Fragmentation Functions (FF)

FFs: - Non perturbative object; needed to describe various reactions

- Strange quark FF= largest uncertainty in Δs extraction from polarized SIDIS. Data exist from e⁺e⁻ and pp reactions, but insufficient and at too high Q²

→ Measure hadron multiplicities in SIDIS: $\mu^+d \rightarrow \mu^+h^\pm X$ h= π , K, p

Corrections for : acceptance, RICH purity & efficiency, radiative effects and vector meson contamination Data obtained in a fine binning in x, z, Q^2

- $\rightarrow \pi$ and K multiplicities constitute an input to global NLO QCD analyses to extract quark FFs,
- \rightarrow Especially, K will constrain strangeness

COMPASS π and K multiplicities vs z in (x,y) bins

- Strong z dependence
- $M(\pi^+) \sim M(\pi^-)$ and $M(K^+) > M(K^-)$

PLB 764 (2017) 001 PLB 767 (2017) 133

From multiplicities to quark Fragmentation Functions

Longitudinal spin- Impact of FF on Δs extraction

Sum of *z*-integrated multiplicities $\pi^+ + \pi^- \& K^+ + K^-$

For isoscalar target, simple dependence on FFs:

COMPASS pion data:

- significantly below HERMES ones
- no x dependence as expected

(as in EMC h, but not shown here)

PLB 764 (2017) 001

F. Kunne

COMPASS kaon data:

significantly above HERMES ones

Indicate larger D_0^{K} than old NLO fits

K Multiplicities on p target

- Preliminary result from 2016 run (2017 to come)
- Radiative corrections using DJANGOH event generator (Spiesberger)
 → reduces systematics

- Results on p confirm discrepancy COMPASS vs HERMES (x,z) data set, observed on d target
- p results 5% above d ones, as expected

Some hints on discrepancies HERMES / COMPASS

Kaons:

- Target hadron mass corrections could explain part of discrepancies.
 Guerrero, Accardi, PRD 97 (2018) 114012
- For the very few points that have exactly the same kinematics in x,y z variables, HERMES and COMPASS agree

M(K⁻)/ M(K⁺) kaon multiplicity ratio at high z

Motivation: High z region not studied so far Most experimental and theoretical uncertainties cancel in ratio

Some simple estimation at LO, proton target with assumptions (D_{unf} neglected...): $R_{K} = \frac{4uD_{fav} + sD_{str}}{4uD_{fav} + \bar{s}D_{str}}$. and assuming $s = \bar{s}$, gives limits: $R_{K} > \frac{\bar{u}}{u}$ for a proton target $R_{K} > \frac{\bar{u} + \bar{d}}{u + d}$ for a deuteron target

M(K⁻)/ M(K⁺) at high *z* – Results vs *z*

Isoscalar target

M(K⁻) / M(K⁺) ratio well below expectations at high z

M(K⁻)/M(K⁺) – Results vs $v = E_h/z$ in 5 z bins

Isoscalar target

for bin *x*=0.03

Larger discrepancy with theory for smaller ν

$M(K^{-})/M(K^{+})$ – Results vs missing mass M_{χ}

- $M(K^-)/M(K^+)$ shows unexpected strong rise with M_{χ}
- Suggests to take into account the available phase space for hadronization, in the formalism

K^{-}/K^{+} Does R_{K} reaches pQCD expectations at higher v?

→ Extend v range up to 70 GeV done by improving kaon selection at high momenta $40 \rightarrow 55$ GeV/c

\overline{p}/p Does R_p show similar unexpected behaviour as R_K ?

→ Study antiproton/ proton case : R_p vs lower LO limit, dependence on v, dependence on M_X

Kaons (I): $R_{K} vs v in 5 z bins$

New data with high K momenta cover higher v range, up to 70 GeV

PoS (DIS2019) 207

- Better compatibility with pQCD expectations at higher $\boldsymbol{\nu}$
- ... and at lower z ~ 0.75- 0.85
- For lower energy experiments, could lower z regions be affected?

Kaons (II): R_K vs M_X

- New data slightly extend M_X range (closed points)
- At fixed M_X, no dependence on v nor z
 → confirms that M_X encompasses all dependences

Kaons and protons: R_{K} and R_{p} vs z

- R_p decreases vs z, as R_K
- Observe large difference between R_{K} and R_{p} , while only 15% expected from LO pQCD

→ Is discrepancy wrt theory larger for higher mass hadrons?

Protons (II): $R_p vs v in 9 z bins$

- Observe v dependence for R_p (as seen for R_K) (beyond expected from x(v))
 - R_p closer to pQCD expectations at higher v values

PoS (DIS2019) 207

Protons (III): $R_p vs M_X$

 \rightarrow For protons also, M_x encompasses all dependences (v and z)

Protons (I): R_p vs z in two x bins

PoS (DIS2019) 207

R_p ratio below lower limit in whole z range

Summary – SIDIS π , K and p multiplicities

p/p and K⁻/K⁺ multiplicity ratios at high z:

- Data **disagree** with current NLO QCD calculations **at high** *z* **and low** *v* (At lower energy, larger region in z may be affected)
- Unexpected rise of ratios with missing mass, suggesting to take into account the available phase space for hadronization, in the formalism.

... Paper in preparation

Reminder : π **and K SIDIS multiplicities**

isoscalar target : PLB 2017 hydrogen target: prelim data DIS-2019

- Largest kaon sample measured, to constrain kaon FFs (D_s^K)
- Some hints on reasons for large discrepancy COMPASS vs HERMES

- Smaller D_s^K and larger D_u^K than previously leads to slightly larger ΔS from SIDIS, i.e. no longer strong incompatibility with ΔS from inclusive data.