Pion/kaon structure study in Primakoff reactions

Andrei Maltsev, JINR, Dubna

On behalf of the COMPASS++/AMBER proto-Collaboration

Workshop on Pion and Kaon Structure Functions at the EIC 05 June 2020

Introduction

- QCD has been an extremely successful theory of strong interactions, but it was not yet possible to derive, from the first principles, fundamental properties of the bound states (masses, spectra)
- Effective QCD-based models were developed and are able to give quantitative predictions for processes at low energies (chiral perturbation theory, quark confinement model, etc.) → need to test applicability regions
- Simplest QCD objects: pions & kaons → obtain experimental results on their structure parameters → control the applicability region of these effective models
- End goal: obtain the properties of the bound states from QCD

Polarizabilities

Interaction between **hadron** and **external electromagnetic field** described by parameters α , β , encoding information about its internal structure

 $H_{em} = \dots - \frac{1}{2} (\alpha \mathbf{E}^2 + \beta \mathbf{B}^2) + \dots$, α : electric polarizability, β : magnetic polarizability

Compton scattering cross-section:

Andrei Maltsev, JINR, Dubna

How to access polarizabilities in experiment?

Idea of Henry Primakoff: EM field of nucleus = photon target!

Assuming: one-photon exchange, $Q^2 \ll m_\pi^2$ Weizsäcker-Williams approximation:

$$\frac{\mathrm{d}\sigma_{\pi^-+(Z,A)\to(Z,A)+\pi^-\gamma}}{\mathrm{d}s\mathrm{d}t\mathrm{d}Q^2} = \frac{Z^2\alpha}{\pi(s-m_\pi^2)} \cdot F_{eff}^2(Q^2) \cdot \frac{Q^2-Q_{min}^2}{Q^4} \cdot \frac{\mathrm{d}\sigma_{\pi\gamma\to\pi\gamma}}{\mathrm{d}t}$$
$$Q_{\min} = (s-m_\pi^2)/2E_{\mathrm{beam}}$$

Extract polarizabilities from $\,\pi^- + (Z,A) \rightarrow \pi^- + \gamma + (Z,A)$

$$R_{\pi} = \left(\frac{d\sigma_{\pi\gamma}}{dx_{\gamma}}\right) \left/ \left(\frac{d\sigma_{\pi\gamma}^{0}}{dx_{\gamma}}\right) = 1 - \frac{3}{2} \frac{m_{\pi}^{3}}{\alpha} \frac{x_{\gamma}^{2}}{1 - x_{\gamma}} \alpha_{\pi}, \quad x_{\gamma} = E_{\gamma}/E_{\text{beam}}$$

Radiative pion photoproduction Photon-Photon fusion

World data on polarizabilities before COMPASS

Pion data

Dedicated measurements are shown in blue

Plot: T. Nagel, PhD TUM, 2012

Kaon data

 $|\alpha_{K}| < 200 \times 10^{-4} \, \text{fm}^{3}$ (90% confidence) (from kaonic atoms spectrum)

G. BACKENSTOSS et. al, Phys.Lett.43B, 5 (1973)

Theory predictions:

χPT (two-loop, pions): $α_{π}-β_{π} = (5.7 \pm 1.0) \times 10^{-4} \text{ fm}^{3}$ $α_{π}+β_{π} = 0.16 \times 10^{-4} \text{ fm}^{3}$

 $\alpha_{\pi} + \beta_{\pi} = 0.16 \times 10^{-4} \text{ fm}^3$ Most other low-energy models
(chiral quark model, dispersion
Quark confi

 $8 \times 10^{-4} \text{ fm}^3 < \alpha_{\pi} - \beta_{\pi} < 12 \times 10^{-4} \text{ fm}^3$

χPT (one-loop, kaons): $\alpha_{K}-\beta_{K} = 1.16 \times 10^{-4} \text{ fm}^{3}$

Quark confinement model: $\alpha_{K}-\beta_{K} = 3.6 \times 10^{-4} \text{ fm}^{3}$ $\alpha_{K}+\beta_{K} = 2.3 \times 10^{-4} \text{ fm}^{3}$

relations):

COMPASS

LHC

1996: proposal 2002-2021: physical data taking

13 countries, 24 institutions, ~220 physicists

COMPASS is a multipurpose experiment with the goal of studying hadron structure and spectroscopy with high-intensity hadron and muon beams.

SPS

COMPASS

COMPASS (2009 setup)

- Two-stage spectrometer, two ECALs
- CEDARs: beam PID
- Trigger: energy deposition in ECAL: $E_{ECAL} > 40/60$ GeV at small angles
- Trigger rate: 30 kHz
- Beam intensity: ~ $5 \times 10^{6} \, s^{-1}$
- Beam composition: 97% π^{-} , 2.4% K⁻
- Beam momentum: 190 GeV/c
- Target: Nickel 4.2 mm (30% X₀, Z = 28)

Pion polarizability at COMPASS

Source of uncertainty	Estimated magnitude [10 ⁻⁴ fm ³]
Determination of tracking detector efficiency	0.5
Treatment of radiative corrections	0.3
Subtraction of π^0 background	0.2
Strong interaction background	0.2
Pion-electron elastic scattering	0.2
Contribution of muons in the beam	0.05
Quadratic sum	0.7

PRL 114, 062002 (2015)

COMPASS 2009 Primakoff run: ~63000 selected π - $Z \rightarrow Z\pi$ - γ events

Previous measurement using Primakoff reaction:

Serpukhov (~7000 events): $\alpha_{\pi} = 6.8 \pm 1.4_{stat} \pm 1.2_{syst} 10^{-4} \text{ fm}^{3}$

Overall: better control and estimate of the background processes, as well as corrections, in comparison with the Serpukhov experiment

Pion polarizability at COMPASS

PRL 114, 062002 (2015)

2012 data are still under analysis: new results on pion polarizability are expected

COMPASS++/AMBER

COMPASS	Oleg's talk COMPASS++/AMBER (19 new institutions)		
	Phase 1	Phase 2 (RE separated beam)	
	\rightarrow Proton radius	→ Primakoff: kaon polarizabilities, chiral anomaly This talk	
	Pion PDFs (DY) Vincent's talk	$\rightarrow \pi^{0}$ lifetime (direct measurement)	
202	\rightarrow GPD E	2026	
	Antiproton-induced	Prompt photons: meson gluon PDFs Charles's talk	
		ightarrow Kaon spectroscopy	

Kaon polarizabilities: RF separated kaon beam at COMPASS++/AMBER

New possibilities to measure kaon polarizabilities due to increased statistics of beam kaons

Two RF cavities (RF1, RF2) with frequency *f*

→ phase difference $\Delta \Phi$ between particles of different masses (and therefore, different velocities):

$$\Delta \Phi = 2\pi (Lf/c) \frac{m_1^2 - m_2^2}{2p^2}$$

Kaon enriched beam: momentum $p_K \gtrsim 80$ GeV, intensity: ~ 5×10^6 s⁻¹ (now: **kaons** @ COMPASS: ~ 10^5 s⁻¹)

Kaon polarizabilities at COMPASS++/AMBER

- Assuming trigger rate improvement: 30 kHz (COMPASS) → 100 kHz (COMPASS++/AMBER)
- Polarizability effects amplified: $(m_K/m_\pi)^3 \approx 44$
- Expected statistical accuracy on $\alpha_{\kappa} \beta_{\kappa}$: $\sigma_{stat} = 0.03 \times 10^{-4} \text{ fm}^3 (\alpha_{\kappa} + \beta_{\kappa} = 0)$:
- No competitors so far

Theory predictions:

χPT (one-loop): α_{K} - β_{K} = 1.16×10⁻⁴ fm³

QCM:
$$\alpha_{\rm K}$$
- $\beta_{\rm K}$ = 3.6×10⁻⁴ fm³

Kaon polarizabilities at COMPASS++/AMBER

More possible measurements (also for pions):

- separate measurements of α_{K} and β_{K}
- quadrupole polarizabilities

Chiral anomaly in $\gamma \pi \rightarrow \pi \pi$, $\gamma K \rightarrow \pi K$

Chiral anomaly: describes $\pi^0 \rightarrow \gamma \gamma$ decay width, describes $\gamma \pi \rightarrow \pi \pi$, $\gamma K \rightarrow \pi K$ vertices

Access $\gamma \pi \rightarrow \pi \pi$ experimentally: need to bridge the gap between s = t = u = 0 and physical region $\rightarrow \chi PT$, dispersive framework

 $\pi^{-}Z \rightarrow Z\pi^{-}\pi^{0}$ $K^{-}Z \rightarrow ZK^{-}\pi^{0} \longrightarrow Test predictions of chiral anomaly, \chiPT$ $K^{-}Z \rightarrow ZK^{-}\eta$

Chiral anomaly in $\gamma \pi \rightarrow \pi \pi$

SIGMA (Serpukhov, 1980-s): $\pi^-Z \rightarrow Z\pi^-\pi^0$

$F_{3\pi} = (10.7 \pm 1.2) \text{ GeV}^{-3}$ Y. M. Antipov et al., Phys.Rev.D36, 21(1987) L. Ametller et al., Phys.Rev.D64, 094009(2001)

CERN SPS: π ·e· \rightarrow π ·e· π ⁰

 $F_{3\pi}$ = (9.6 ± 1.1) GeV⁻³

S. R. Amendolia et al., Phys.Lett.B155, 457(1985)

I.Giller et al., Eur.Phys.J.A25 229(2005)

Chiral anomaly: $F_{3\pi} = (9.78 \pm 0.05) \text{ GeV}^{-3}$

Experiment: precision at 10% level, data samples at $\pi\pi$ threshold (rejecting **interfering \rho sample**)

Plans at COMPASS: use a dispersive framework (M.Hoferichter et.al, Phys.Rev.D86, 116009(2012)) to incorporate the physics of the $\rho(770)$ meson, increasing data sample **Allows to extract \rho radiative width from the same sample** (same level of precision as $F_{3\pi}$)

Cross section for $\gamma \pi \rightarrow \pi \pi$ in the dispersive framework for two sets of free parameters

Andrei Maltsev, JINR, Dubna

Chiral anomaly in $\gamma K \rightarrow \pi K$

As long as $m_s \ll \Lambda_{QCD}$ is considered, $\gamma K \rightarrow \pi K$ amplitude could also be obtained from chiral anomaly:

sum of charges = 1 (or -1)

Two processes with kaons: K-γ→K-π⁰ K-γ→K⁰π-

M. I. Vysotsky and E. V. Zhemchugov Phys.Rev.D93, 094029(2016)

- only $K^-\gamma \rightarrow K^-\pi^0$ is influenced by the chiral anomaly
- contributions to $K^-\gamma \rightarrow K^-\pi^0$ and $\pi^-\gamma \rightarrow \pi^-\pi^0$ are equal

Chiral anomaly in $\gamma K \rightarrow \pi K$

Anomaly contribution could be determined from difference in cross section between $K^-\gamma \rightarrow K^-\pi^0$ and $K^-\gamma \rightarrow K^0\pi^-$

Experiment planned at Serpukhov: expected statistics (L = $60 \ \mu b^{-1}$): ~ $10 \ \text{K}^{-}\gamma \rightarrow \text{K}^{0}\pi^{-} \text{ events}$ ~ $20-70 \ \text{K}^{-}\gamma \rightarrow \text{K}^{-}\pi^{0}$ events (for descructive/constructive interference)

An experiment with higher statistics would also test chiral anomaly predictions in the kaon sector. COMPASS++/AMBER provides such opportunity. Two solid lines: different interference phase between anomaly and resonance terms

Chiral anomaly in $\gamma \pi \rightarrow \pi \eta$, $\gamma K \rightarrow \eta K$

- Expression for $\gamma \pi \rightarrow \pi \eta$ coupling $F_{\eta \pi \pi \gamma}(0,0,0) = \frac{e}{4\pi^2 f_{\pi}^3} (\frac{f_{\pi}}{f_8} \frac{\cos \theta_p}{\sqrt{3}} \frac{f_{\pi}}{f_0} \sqrt{\frac{2}{3}} \sin \theta_p)$ where f_{π} , f_8 , f_0 : π / octet η / singlet η decay constants, θ_p : singlet-octet mixing angle
- Mixing parameters extracted from $\eta, \eta' \to \pi^+ \pi^- \gamma; \quad \eta, \eta' \to \gamma \gamma$ **Predicted value:** $F_{\eta\pi\pi\gamma}(0,0,0) = 6.5 \pm 0.3 \text{ GeV}^{-3}$ Phys.Rev.D57,7(1998)
- VES measurement (1998): Primakoff reaction $\pi^- Be \to \eta \pi^- Be$, obtained result: $F_{\eta\pi\pi\gamma}(0,0,0) = 6.9 \pm 0.7 \text{ GeV}^{-3}$ IHEP Preprint 98-62

• More possibilities also with $\boldsymbol{\gamma K} {\rightarrow} \boldsymbol{\eta K}$ vertex

Chiral dynamics in $\pi\gamma \rightarrow \pi\pi\pi$

Andrei Maltsev, JINR, Dubna

Radiative widths of mesons

Access radiative width $\Gamma(X \rightarrow \pi \gamma)$ via Primakoff reaction $\pi \gamma \rightarrow X$: $\sigma_{Primakoff,X}$

$$= \int_{m_1}^{2} \int_{0}^{\max} \frac{\mathrm{d}\sigma}{\mathrm{d}m\,\mathrm{d}t'} \,\mathrm{d}t'\,\mathrm{d}m$$
$$= \Gamma_0(X \to \pi\gamma)C_X.$$

 cm_2 ct' 1

COMPASS, $\pi^{-}\gamma \rightarrow \pi^{-}\pi^{-}\pi^{+}$: contributions from a₂(1320), $\pi_{2}(1670)$ disentangled using PWA:

	$a_2(1320)$	$\pi_2(1670)$
This measurement	$(358 \pm 6 \pm 42) \mathrm{keV}$	$(181 \pm 11 \pm 27) \mathrm{keV} \cdot (0.56/\mathrm{BR}_{f_2\pi})$
SELEX [21] S. Cihangir <i>et al.</i> [24] E.N. May <i>et al.</i> [25]	$(284 \pm 25 \pm 25) \text{ keV}$ $(295 \pm 60) \text{ keV}$ $(0.46 \pm 0.11) \text{ MeV}$	
VMD model [1] Relativ. Quark model [2] Cov. Osc. Quark model [3] Cov. Osc. Quark model [4]	$(375 \pm 50) { m keV}$ $324 { m keV}$ $235 { m keV}$ $237 { m keV}$	2 values: 335 keV and 521 keV

Possible to extract: ρ radiative width from $\gamma \pi \rightarrow \pi \pi$, **K**^{*} radiative width from $\gamma K \rightarrow \pi K$

SPS, CERN: $\Gamma(\rho \to \pi \gamma) = (81 \pm 4 \pm 4) \text{ keV}$ Nucl.Phys.B288, 659 (1987)

Summary

- Measurements of pion and kaon polarizabilities and quantitative studies of meson structure are of interest as a way to test the predictions of lowenergy phenomenological models with the goal of controlling their regions of applicability.
- COMPASS collaboration has published the most precise result on pion polarizability using Primakoff reactions among specialized measurements, as well as first result on $\pi\gamma \rightarrow \pi\pi\pi$ cross section near threshold.
- More data is under analysis at COMPASS and new results on meson polarizabilities and chiral anomaly are expected.
- At COMPASS++/AMBER experiment, the new RF separated kaon-enriched beam will allow to measure kaon polarizabilities with an unprecedented precision, as well as study the chiral anomaly with kaons.