

Extracting Chiral Perturbation Theory Parameters from Primakoff Measurements at COMPASS

Dominik Steffen Arbeitstreffen Kernphysik 2020

Uhrenturn der TVM

Chiral Perturbation Theory (ChPT)

- QCD the true theory of strong interaction
- Perturbation theoretical series $f(\alpha_S) = c_0 + c_1\alpha_S + c_2\alpha_S^2 + \cdots$ fails for $\alpha_{\rm S} \sim 1$.
- Expansion in powers of α_s no longer applicable when $\alpha_{\rm S} \sim 1$ to obtain predictions => not applicable for bound states => Effective Theory (ChPT)
- At low Q: Effective degrees of freedom π, η, K
- Expansion not in α_s , but in quark masses and momenta of interacting particles
- Systematic way to calculate corrections: loop, 2-loop, etc.
- Basic predictions: interactions and properties of pseudoscalar mesons

Chiral Perturbation Theory (ChPT)

- QCD the true theory of strong interaction
- Perturbation theoretical series $f(\alpha_S) = c_0 + c_1\alpha_S + c_2\alpha_S^2 + \cdots$ fails for $\alpha_S \sim 1$.
- Expansion in powers of α_S no longer applicable when $\alpha_S \sim 1$ to obtain predictions => not applicable for bound states => Effective Theory (ChPT)
- At low Q: Effective degrees of freedom π, η, K
- Expansion not in α_S , but in quark masses and momenta of interacting particles
- Systematic way to calculate corrections: loop, 2-loop, etc.
- Basic predictions: interactions and properties of pseudoscalar mesons

LMU-ASC-10-16 (2016)

Dominik Steffen | Arbeitstreffen Kernphysik | 27/02/2020

Chiral Perturbation Theory (ChPT)

- QCD the true theory of strong interaction
- Perturbation theoretical series $f(\alpha_S) = c_0 + c_1\alpha_S + c_2\alpha_S^2 + \cdots$ fails for $\alpha_S \sim 1$.
- Expansion in powers of α_S no longer applicable when $\alpha_S \sim 1$ to obtain predictions => not applicable for bound states => Effective Theory (ChPT)
- At low Q: Effective degrees of freedom π, η, K
- Expansion not in α_S , but in quark masses and momenta of interacting particles
- Systematic way to calculate corrections: loop, 2-loop, etc.
- Basic predictions: interactions and properties of pseudoscalar mesons

Dichotomous character of the pion

- 1. Pion as the lightest bound state of $q \bar{q}$ in QCD
- Pion as Nambu-Goldstone boson of the dynamically broken chiral symmetry (DCSB)
 - \Rightarrow DCSB for low mass of pion

Dominik Steffen | Arbeitstreffen Kernphysik | 27/02/2020

Pion polarizability

- Classically: structure-dependent response to electromagnetic field (due to non-point-like)
- Well-known for atoms and molecules
- Measured on 10%-level for nucleons
- At quantum level: correction to Compton cross-section $\gamma\pi \longrightarrow \gamma\pi$
- ChPT (2-loop) prediction:

$$lpha_{\pi} = 2.93 \pm 0.5$$

 $eta_{\pi} = -2.77 \pm 0.5$

Primakoff reactions

- Idea dates back to Henry Primakoff ("photon target")
- Photon is provided by the strong Coulomb field of a nucleus (typical field strength at $d = 5R_{Ni}$: $E \approx 300 \text{ kV/fm}$
- Coulomb field of nucleus as a source of quasi-real ($P_{\gamma}^2 \ll m_{\pi}^2$) photons
- Large impact parameters (ultraperipheral scattering)

Weizsäcker-Williams approximation

• Coulomb field of relativistic charge \approx flux of quasi-real photons:

(assuming 1-photon exchange) Flux of quasi-real photons Cross-section of reaction

Weizsäcker-Williams approximation

• Coulomb field of relativistic charge \approx flux of quasi-real photons:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}s\,\mathrm{d}Q^2\,\mathrm{d}\Phi_n} = \frac{Z^2\alpha}{\pi(s-m_\pi^2)}F^2(Q^2)\frac{Q^2-Q_{\min}^2}{Q^4}\cdot\frac{\mathrm{d}\sigma_{\pi\gamma\to X}}{\mathrm{d}\Phi_n}$$
Primakoff MC truth
$$\frac{\frac{\mathrm{d}\sigma}{\mathrm{d}s\,\mathrm{d}Q^2\,\mathrm{d}\Phi_n} \propto \frac{Q^2-Q_{\min}^2}{Q_{\min}^4}}{\mathrm{for}\,q_{\min}=1.5\,\mathrm{MeV}\,\widehat{=}\,\sqrt{s}\,\approx770\,\mathrm{MeV}}$$
• Particles scatter off photons
• Peak at tiny moment $Q^2 \approx 10^{-5}\,\mathrm{GeV}^2/c^2$

- ter off equivalent
- momentum transfers eV^2/c^2

10

20

30

q (MeV)

 $d\sigma / ds dQ^2 d\Phi_n$

0.2

a = √2 · a

General requirements for Primakoff

- Fixed target setup with nuclear target (*Z*-dependence of WW approximation)
- Good q²-resolution to separate Coulomb processes (Primakoff) from other processes (strong processes)
- Neutral particles in final state \rightarrow calorimetry with good position/energy resolution for good q^2 -resolution.
- Beam and final state particle ID
- Selection of target material and beam energy to improve the separation of Primakoff events from background

GIS'06: ChPT prediction, Gasser, Ivanov, Sainio, NPB745 (2006), plots: T. Nagel, PhD Fil'kov analysis objected by Pasquini, Drechsel, Scherer PRC81, 029802 (2010)

Dominik Steffen | Arbeitstreffen Kernphysik | 27/02/2020

COMPASS overview

Dominik Steffen | Arbeitstreffen Kernphysik | 27/02/2020

COMPASS overview

LHO

CERN SPS: protons $\sim 400 \text{ GeV}$

(5-10 sec spills)

 Secondary π, K, p: up to 2 · 10⁷/s (typ 5 · 10⁶/s) Nov 2004, 2008-09, 2012: hadron spectroscopy & Primakoff reactions

SPS

Tertiary muons: $4 \cdot 10^7$ /s 2002-04, 2006-07, 2010-11: spin structure of the nucleon

COMPASS

Experimental setup

Fixed target experiment

- two stage magnetic spectrometer
- High-precision, high-rate tracking, PID, calorimetry

Setup in 2009

Experimental setup

Fixed target experiment

• two stage magnetic spectrometer

Setup in 2009

• High-precision, high-rate tracking, PID, calorimetry

Experimental setup

Fixed target experiment

- two stage magnetic spectrometer
- High-precision, high-rate tracking, PID, calorimetry

Access to $\pi + \gamma$ reactions:

$$\pi^{-} + \gamma \rightarrow \begin{cases} \pi^{-} + \gamma \\ \pi^{-} + \pi^{0} / \eta \\ \pi^{-} + \pi^{0} + \pi^{0} \\ \pi^{-} + \pi^{-} + \pi^{+} \\ \pi^{-} + \pi^{-} + \pi^{+} + \pi^{-} + \pi^{+} \\ \pi^{-} + \dots \end{cases}$$

SM1

Runs with hadron beams

- 190 GeV π^- -beam on p and nuclear targets (C, Ni, W, Pb)
- Silicon microstrip detectors for vertexing
- Recoil and ECAL triggers

Measurement principle

- 190 GeV negative hadron beam: 96.8% π^{-} , 2.4% K^{-} , 0.8% \bar{p}
- Beam particle identification by Cherenkov detectors
- 4mm Ni target disk ($\approx 25\% X_0$)
- Measure scattered π^- and produced photons (number of photons depends on final state)
- Select exclusive events at very low Q^2
- For absolute cross-section measurements: Luminosity

Luminosity determination via free Kaon decays

$$(K^- \rightarrow \pi^- \pi^0 \text{ or } K^- \rightarrow \pi^- \pi^0 \pi^0)$$

Extracting the pion polarizability

- Identify exclusive reactions $\gamma\pi\to\gamma\pi$ at smallest momentum transfer $Q^2<0.0015~{\rm GeV^2}/c^2$

Extracting the pion polarizability

- Identify exclusive reactions $\gamma\pi \to \gamma\pi$ at smallest momentum transfer $Q^2 < 0.001~{\rm GeV^2/c^2}$
- Assuming $\alpha_{\pi} + \beta_{\pi} = 0$, from the cross-section

$$R = \frac{\sigma(x_{\gamma})}{\sigma_{\alpha_{\pi}=0}(x_{\gamma})} = \frac{N_{meas}(x_{\gamma})}{N_{sim}(x_{\gamma})} = 1 - \frac{3}{2} \cdot \frac{m_{\pi}^3}{\alpha} \cdot \frac{x_{\gamma}^2}{1 - x_{\gamma}} \alpha_{\pi}$$

can be derived, depending on $x_{\gamma} = E_{\gamma(\text{lab})}/E_{\text{beam}}$

• Control systematics by reaction:

$$\mu\gamma \longrightarrow \mu\gamma$$

Result for the pion polarizability

 $lpha_{\pi}~=~($ 2.0 $\pm~$ 0.6_{stat})~ imes 10⁻⁴ fm³ (assuming $lpha_{\pi}=-eta_{\pi}$)

"false polarisability" from muon data:

(0.5 \pm 0.5_{stat}) \times 10⁻⁴ fm³

Phys. Rev. Lett. 114, 062002 (2015)

Dominik Steffen | Arbeitstreffen Kernphysik | 27/02/2020

World data including COMPASS

world avg.: 7.5 ± 1.6

- The COMPASS result is in significant tension with the earlier measurements of the pion polarizability
- The expectation from ChPT is confirmed within the uncertainties

Discovery of the Chiral Anomaly

- Early 60ies: Partially Conserved Axial Current (PCAC): $\tau_{PCAC}(\pi^0) \approx 0.95 \cdot 10^{-13} s$
- 1960 1963: First definitive, high energy measurements of the π^0 -lifetime . E.g. with an 18 GeV proton beam at CERN: $\tau(\pi^0) = (0.95 \pm 0.15) \cdot 10^{-16} s^*$
- Adler, Bell, Jackiw, Bardeen 1969: calculation of triangle diagram

 $\tau_{anom}(\pi^0) \approx 0.838 \cdot 10^{-16} s$

 \Rightarrow non-conservation of the axial current

Chiral Anomaly

- $F_{3\pi}$: Direct coupling of γ to 3π process proceeds primarily via the chiral anomaly => one of the most definitive tests of low-energy QCD
- Soft pion limit: $A(\gamma \rightarrow \pi \pi \pi) = 0$ (conservation of angular momentum)
- ChPT prediction in chiral limit:

 $F_{3\pi} = \frac{eN_C}{12\pi^2 F_{\pi}^3} = (9.78 \pm 0.05) \,\mathrm{GeV}^{-3}$

• ChPT corrections due to small masses of quarks:

 $\to F_{3\pi} = F_{3\pi}(s, t, u)$

(*s*, *t*, *u*-dependence)

• Accessible in Primakoff reactions via: $\pi^-\gamma^* \rightarrow \pi^-\pi^0$

• Coherent background of ho(770)-production

• Pomeron exchange forbidden by *g*-Parity

 \Rightarrow clean Primakoff signal (except ω/π -

(strong and electro-magnetic)

exchange)

Interference between Chiral Anomaly and $\rho(770) \Rightarrow \text{possibility of extraction of}$ radiative width of ρ -meson $\Gamma_{(\rho \to \pi \gamma)} / \Gamma_{\text{tot}} \approx 4.5 \cdot 10^{-4}$

• $m_{\pi^-\pi^0}$ distribution shows contribution from $\rho(770)$.

At kinematic threshold: non-resonant behaviour but chiral anomaly

Radiative width of ho-meson

Radiative width of ρ -meson

- Pomeron exchange forbidden by g-Parity \Rightarrow clean Primakoff signal (except ω/π exchange)
- Coherent background of $\rho(770)$ -production (strong and electro-magnetic)

Interference between Chiral Anomaly and $\rho(770) \Rightarrow \text{possibility of extraction of}$ radiative width of ρ -meson $\Gamma_{(\rho \to \pi \gamma)} / \Gamma_{\text{tot}} \approx 4.5 \cdot 10^{-4}$

• $m_{\pi^-\pi^0}$ distribution shows contribution from $\rho(770)$.

At kinematic threshold: non-resonant behaviour but chiral anomaly

Previous measurements

Chiral Anomaly:

Ametller, L. *et al.* Phys.Rev. D64 (2001) 094009 from Serpukhov experiments:

- Using extrapolation & em corr: $F_{3\pi} = (10.7 \pm 1.2) \text{ GeV}^{-3}$
- Compare to prediction from ChPT and Chiral Anomaly: $F_{3\pi} = (9.78 \pm 0.05) \text{ GeV}^{-3}$

Precision of previous measurements: O(10%)

⇒ More precise experimental determination desirable

Radiative width of ρ -meson:

<u>Capraro, L. *et al.* Nucl.Phys. B288 (1987)</u> <u>659-680</u> at CERN (SPS):

• From fit of $d\sigma/dt$ for ρ production: $\Gamma(\rho \rightarrow \pi \gamma) = (81 \pm 4 \pm 4) \text{ keV}$

• Dispersive framework to deduce $F_{3\pi}$ from a fit to the full data set up to 1.2 GeV including

Final State: $\pi^-\pi^0$

Hoferichter, Kubis, and Sakkas Phys. Rev. D 86, 116009 (2012)

$$\sigma(s) = \frac{(s - 4M_{\pi}^2)^{\frac{3}{2}}(s - M_{\pi}^2)}{1024\pi\sqrt{s}} \int_{-1}^{1} dz \, (1 - z^2) |\mathcal{F}(s, t, u)|^2$$

with
$$\mathcal{F}(s,t,u) = C_2^{(1)} F_2^{(1)}(s,t,u) + C_2^{(2)} F_2^{(2)}(s,t,u)$$

Two fit parameters Determinable iteratively

Fit to the data

cross-section [a.u.]

- Fit of the final normalized and acceptance-corrected mass-distribution with subtracted background
 - СОМРАЅЅ 2009 **preliminary** 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 m_-d [GeV/c²]
- Fit of the theoretical model in good agreement with data
- Statistical uncertainty $\mathcal{O}(1\%)$
- Result to be expected within the next months

Summary and Outlook

- ChPT and DCSB well established in QCD (pion in as Nambu-Goldstone boson)
- Measurement of the pion polarizability at COMPASS
 - Via Primakoff process, COMPASS has determined

 $lpha_{\pi}~=~$ (2.0 $\pm~$ 0.6_{stat} $\pm~$ 0.7_{syst}) $\times~$ 10⁻⁴ fm³

- Most precise experimental determination
- Systematic control via $\mu\gamma \longrightarrow \mu\gamma$
- Measurement of the Chiral Anomaly via $F_{3\pi}$ and the radiative width of the $\rho\text{-meson}$ upcoming
 - Using the Primakoff reaction $\pi^-\gamma^* \to \pi^-\pi^0$ and a full fit to the $m_{\pi^-\pi^0}$ -spectrum up to 1.2 GeV from a dispersive model
 - Statistical uncertainties expected to be $\mathcal{O}(1\%)$
- Other related channels at COMPASS:

$$\left. \begin{array}{c} \pi^{-}\gamma^{*} \rightarrow \pi^{-}\pi^{0}\pi^{0} \\ \pi^{-}\gamma^{*} \rightarrow \pi^{-}\pi^{-}\pi^{+} \end{array} \right\} \text{ chiral tree and loop predictions available}$$