

COMPASS++

Physics opportunities for a future COMPASS-like experiment

G.K. Mallot for COMPASS EP-SME-CO

many slides from Oleg Denisov

- Introduction
- Physics with RF-separated beams (kaons, antiprotons)
 - Spectroscopy
 - Drell-Yan
- Physics with existing muons and hadron beams
 - SIDIS, DVCS, DVMP
 - DY
- Outlook

QCD Questions

- How in detail hadrons are made up by quarks and gluons
- What are the correlations, e.g. between transverse and spatial degrees of freedom (TMD, GPD, tomography)
- Are time-reversal-odd TMD PDFs universal?
- What is the structure of kaons (kaon DY, direct photons)
- Kaon excitation spectrum and decay modes $> 1.5 \text{ GeV}/c^2$
- Charmonium hybrids and exotics
- chiral dynamics kaon polarisability
- add-on: Dark matter, supporting measurements

Future plans

- COMPASS is preparing a Letter of Intent for a new round of experiments beyond 2020
- Open to new groups and ideas
- Starting point: <u>Beyond 2020 workshop</u> March 2016 at CERN
- Unique opportunity: RF separated kaon and antiproton beams (in M2)

 $\Delta \Phi$ = 2 π (L f / c) (β_1^{-1} - β_2^{-1}) with β_1^{-1} - β_2^{-1} = (m_1^2 - m_2^2)/2 p^2

- Goals: LoI in 2017, proposal in 2018
- Likely a 7-8 year endeavour

COMPASS

Ideas for a LoI

- Spectroscopy with RF-separated beams
 - Kaon: Hadron spectroscopy and diffraction
 - Kaon: polarisability
 - Kaon: gluon distribution with prompt photons
 - Antiproton: Charmonium hybrids and exotics (low pbar energy)
- Drell-Yan with RF-separated beams
 - Kaon: DY with both polarised and unpolarised targets, kaon structure
 - Antiproton: DY, both polarised and unpolarised, TMDs

LoI (cont'd)

- Physics with existing muon beam
 - SIDIS with transverse polarised deuteron target
 - DVCS with transverse polarised proton target
- Physics with existing pion/proton beam
 - Pol. DY with deuteron target flavour separation
 - Unpol. DY with various targets
 - x-section $p + \text{He} \rightarrow \bar{p} X$ for dark matter

Programme with present beams, likely to start right after LS2 (unless separated beams would be available already)

Versatile COMPASS in EHN2

Hadron Spectroscopy & Polarisability

COMPASS-I 1997-2011

COMPASS

Polarised SIDIS

Polarised Drell-Yan

COMPASS-II 2012-2018

DVCS (GPDs) + unp. SIDIS

RF-separated kaon beam Hadron spectroscopy (~10⁸/s in spill, ~100 GeV)

 $\Delta \Phi$ = 2 π (L f / c) ($\beta_1^{-1} - \beta_2^{-1}$) with $\beta_1^{-1} - \beta_2^{-1}$ = ($m_1^2 - m_2^2$)/2p²

Light and strange meson sector

COMPASS:

 3π data sample ~50x10⁶ exclusive events – factor 10 to 100 more than previous experiments, advanced analysis (88 waves) PRD 95 (2017) 032004

Illustration or our potential: discovery of a new axial-vector meson $a_1(1420)$ in $1^{++}0^+ f_0(980)\pi P$ wave. PRL 115 (2015) 082001

G.K. Mallot 01/03/2017

Kaon states

- PDG lists in total 25 kaon states
 - 17 kaon states above $1450 \text{ MeV}/c^2$
 - 12 are omitted from summary tables
 - 8 need confirmation, for 2 states J^P is unknown
- All entries are older than 20 30 years
- Mapping out the kaon excitation spectrum and decay modes helps understanding light-meson spectrum by completing SU(3) flavour multiplets
- With an RF-separated kaon beam COMPASS++ could increase the global data set by a factor 10 and rewrite PDG for strange mesons for masses > $1.5 \text{ GeV}/c^2$
- Unique opportunity, no real competitors ^{B. Grube, Beyond 2020 WS}

 p_{recoil}

Chiral dynamics – e.g. kaon polarisability

- Primakoff reaction $\pi\gamma \rightarrow \pi\gamma$ in nuclear field
- El. & magn. polarisabilities (α , β) are fundamental properties, predictable in χ PT
- COMPASS measured α for π assuming $[\alpha + \beta = 0]$
- With RF-separated beam kaon measurement possible
- Further measurements for other processes $\pi \gamma \rightarrow \dots$ in parallel

Direct photons from kaons (& pions)

Production of direct photons $hN \rightarrow X\gamma$

- Under study, maybe tests during 2017 GPD run
- First observation of direct photon production with a kaon beam could be an important direct measurement of gluon contribution in kaons
- No data existing

RF-separated(?) antiproton beam Hadron spectroscopy $(\sim 5 \times 10^6/s \text{ in spill}, \sim 20 \text{ GeV or lower})$

 $\Delta \Phi = 2\pi (L f / c) (\beta_1^{-1} - \beta_2^{-1}) \text{ with } \beta_1^{-1} - \beta_2^{-1} = (m_1^2 - m_2^2)/2p^2$

`Charmonium-like' mesons

Two body

thresholds

Molecules

Excitations

qq Mesons

Gluonic

- Many narrow states discovered in recent years [LHCb, Belle, ...]
- Assignment not clear, hybrids and exotics
- Study states in $p\bar{p}$ annihilation, gluon rich
- ass range beyond PANDA

 Complementary to LHCb, otherwise no competitors for the next at least 10 years

RF-separated beams (>120 GeV)neg. kaons $(\sim 8 \times 10^6/s \text{ in spill})$ **antiprotons** $(\sim 4 \times 10^7/s \text{ in spill})$

Drell-Yan

G.K. Mallot 01/03/2017

Kaon-induced DY

- Kaon-induced DY is the only source of information on kaon structure
- Compare pion and kaon-induced DY x-sections

- 2. Nucleon strange quark structure
- 3. Fundamental Lam-Tung relation for the kaon
- Boer-Mulders TMDs (quark-spin quark-k_T correl.) for kaons
 ...
- Unique opportunity

$$\frac{\mathrm{d}\sigma^{K^-}/\mathrm{d}x_1}{\mathrm{d}\sigma^{\pi^-}/\mathrm{d}x_1} = \frac{\overline{u}_K}{\overline{u}_\pi}(x_1)$$

Model-independent TMD extraction

- TMD (restricted) universality
- TMD-induced asymmetries in both High-Mass and J/Ψ regions:
 - 1. Boer-Mulders (quark-spin quark- k_T correl.) extraction (CPT)
 - 2. Transversity extraction
 - 3. Lam-Tung relation for antiprotons (QCD effects)
 - 4. Sivers asymmetry (nucleon-spin–quark- k_T correlations) without uncertainty from pion PDFs
 - 5. Sivers function for gluons (J/Ψ regions)
 - 6. ...
- Unique data

Drell-Yan rates

- Assuming flux of 1x10⁷ /s for kaon/antiproton,
- High mass range 4 < $M_{\mu\mu}$ < 9 GeV/ c^2
- 140 days of data taking with the efficiency of 2015 Drell-Yan run assuming a flux of 1x10⁷ /s for kaons/antiprotons
- The overall gain for RF-separated beams wrt previous experiments is a factor 50 to 100

Beam	COMPASS++ (proj.)			NA3	E537
	NH3	Al	W		
K^{-}	14'000	2'800	29'600	700	
$ar{p}$	15'750	2'750	22'500		387

Existing muon beams Exclusive processes (GPD) SIDIS with deuteron target

Existing hadron beams pol. DY with deuteron target

- Generalised Parton Distribution (GPD) *E* and access to Orbital Angular Momentum
 - DVCS ($\mu \ p^{\uparrow} \rightarrow \ \mu \ p \ \gamma$)
 - DVMP ($\mu \ p^{\uparrow} \rightarrow \mu \ \rho$ ($\omega) \ \gamma$)
- Recoil detector to be inserted into the PT magnet
 - Several options being studied
- unique kinematic range, small x

Figure 13: Expected statistical accuracy of $A_{CS,T}^{D,\sin(\phi-\phi_s)\cos\phi}$ as a function of -t, x_B and Q^2 from a measurement in 280 days, using a 160 GeV muon beam and ECAL1+ECAL2. Solid and open circles correspond to the simulations for the two hypothetical configurations of the target region (see text). Also shown is the asymmetry $A_{U,T}^{\sin(\phi-\phi_s)\cos\phi}$ measured at HERMES [41] with its statistical errors.

- Only existing deuteron/neutron data sets:
 COMPASS (⁶LiD) and CLAS (³He)
- COMPASS data only from 2002–2004
- Data set factor 4 smaller than proton set
- For flavour separation equal statistics is optimal

Fig. 6: $xh_1^u(x)$ (left) and $xh_1^d(x)$ (right) from the 'two hadron' asymmetries of 2010 proton and of 2002-2004 deuteron data (from[30]). The curves show the transversity PDFs obtained from a fit of Collins asymmetries [29]

Pion-induced Drell-Yan (⁶LiD, LH₂)

- Pol. proton DY data in 2015/2018
- Pol. deuteron DY data needed for flavour separation of PDFs
- Shorter run with unpolarised LH2 target is required
 - to test fundamental Lam-Tung relation
 - to extract Boer-Mulders TMD using "clean" (no nuclear effects) LH target – complementary to SIDIS.
- Simulation for 140 days of beam:

Unique, no competitors

Astrophysics – search for dark matter, possible contribution from COMPASS

- New AMS(2) data the antiparticle flux is well known now (few % pres.);
- Two types of processes contribute SM interactions (proton on the ISM with the production for example antiprotons in the FS.) and contribution from dark matter annihilation;
- In order to detect a possible excess in the antiparticle flux a good knowledge of inclusive cross sections of p-He interaction with antiparticles in the FS is a must, currently the typical precision is of 30-50%.

Thus the primary goal is to measure inclusive antiproton (positron, gamma) production cross section in a wide kinematical range with the precision <10%. **Compared to NA49 COMPASS has factor ~1000** in luminosity. COMPASS:

- Proton beam energy range 50-250 GeV
- Secondary particles identification:
 - Antiprotons (RICH)
 - Positrons and Gamma (ECals)

Outlook

- Many open questions and important measurements remain on hadron structure and spectroscopy
- The COMPASS spectrometer is a unique facility and well adapted to the proposed measurements
- Upgrades in various places are inevitable for a 7–8 year programme after 2020
- An extended collaboration has to be built on the COMPASS nucleus
- RF-separated kaon and antiproton beams would open a new chapter in structure and spectroscopy studies

M2 muon beam option should be kept if possible