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CERN SPS: protons ∼ 450 GeV (5 – 10 sec spills)

tertiary muons: 4·107 / s
2002-04, 2006-07, 2010-11, 2016: nucleon spin structure

secondary π,K , (−)p : up to 2·107/s (typ. 5·106/s)
Nov. 2004, 2008-09, 2012, 2015:
hadron spectroscopy, Primakoff, Drell-Yan
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Fixed-target experiment

two-stage magnetic spectrometer

high-precision, high-rate tracking,
PID, calorimetry
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Fixed-target experiment

two-stage magnetic spectrometer

high-precision, high-rate tracking,
PID, calorimetry

Collaboration

> 200 physicists

currently 23 institutes

increasing number of
associated members



Diffractive 3π production

COMPASS: World’s currently largest
data set for the diffractive process

p + π−beam → p + π−π+π−

taken in 2008
(∼ 46 · 106 exclusive Events)

Exclusive measurement

Squared four-momentum transfer t ′ by
Pomeron P

Rich structure in π−π+π− mass spectrum:
Intermediary states X−

Also structure in π+π− subsystem:
Intermediary states ξ (Isobar)
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Diffractive 3π production

COMPASS: World’s currently largest
data set for the diffractive process

p + π−beam → p + π−π+π−bachelor
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Wanted: really good fits

(1) all details of the three-body phase-space shall be matched,
including momentum transfer dependence

(2) Breit-Wigner resonances + smoother non-resonant contributions
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The isobar model

Intermediate states appear as dynamic amplitudes ∆ (m):
Complex-valued functions of invariant mass m

Simplest example: Breit-Wigner amplitude with mass m0 and width Γ0:

∆BW (m) =
m0Γ0

m2
0 −m2 − im0Γ0

Analysis in bins of mX− = m3π. Dynamic amplitude of X− inferred form
the data

Dynamic amplitude of ξ: Model input in conventional PWA

True dynamic isobar amplitudes may differ from the model

Free parameters in dynamic isobar amplitudes computationally unfeasible
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Freed isobars: powerful test of the assumptions
Step-like isobar amplitudes

Total intensity in each single (m3π, t ′)-bin

I(~τ) =

∣∣∣∣∣
waves∑

i

Ti [ψi (~τ) ∆i (mπ−π+ ) + Bose Symm.]

∣∣∣∣∣ 2

as function of phase-space variables ~τ
Fit parameters: Production amplitudes Ti

Fixed: Angular distributions ψ (~τ), dynamic isobar amplitudes ∆i (mπ−π+ )

Fixed isobar amplitude gets replaced by a set of bins:

∆i (mπ−π+ )→
∑
bins

Ti
bin ∆i

bin (mπ−π+ )︸ ︷︷ ︸
1 in the bin,
0 otherwise

≡ [ππ]JPC

Each bin introduces an independent Partial Wave Ti
bin = TiTi

bin:

I (~τ) =

∣∣∣∣∣
waves∑

i

∑
bins

Ti
bin
[
ψi (~τ) ∆bin

i (mπ−π+ ) + Bose S.
]∣∣∣∣∣ 2
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Partial-Wave Analysis

I (~τ) =
∣∣∣∑ Tiψi (~τ) ∆i (mπ−π+ )

∣∣∣2
Waves specified by:

JPCMεξπL P
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ptarget precoil
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[JPCMǫ]

Isobar

π´
beam

ptarget precoil

π´
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ptarget precoil

π´
beam

ptarget precoil

[L]

Bachelor
π´

π+

π´

π´
beam

ptarget precoil

[L]

Bachelor
π´

π+

π´

JPC : spin and eigenvalues under parity and charge conjugation
of X−(or its multiplet)
Mε: spin projection and naturality of the exchange particle
ξ: the fixed or freed isobar, e.g. ρ (770) or [ππ]1−−

π: the bachelor π−(always the same)
L: orbital angular momentum between isobar and bachelor pion

88 waves needed to describe the data (“hand-selected”)
interference terms→ get (relative) phases
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Step 1: Partial-Wave Analysis

Selected Waves (1

234

of 88) in two of the 11 independent t ′ bins

Low t ′

High t ′
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Step 2: Resonance model fit

×11 bins in t ′
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Towards the first exotic signal: JPC = 1++ sector

a1(1260)

a1(1640)

a1(1420)
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a1(1260)

resonance parameters do not
depend on production mechanism

couplings and non-resonant parts
may vary with t ′

t ′-resolved analysis: better
disentanglement of resonant and
non-resonant parts
a1(1260) reproduced:

mfit = 1298+13
−22 MeV/c2

mPDG= 1230±40 MeV/c2

Γfit = 403+0
−100 MeV/c2

ΓPDG =250− 600 MeV/c2

weak signal for a1(1640)
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a1(1420)
a new - quite exotic - signal
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a1(1420)
a new - quite exotic - signal

new signal: a1(1420)

decay into f0(980)π

possible explanations:
I triangle diagram Mikha-

senko, Ketzer, Sarantsev
PRD91 (2015) 094015

I two-channel unitarized
Deck amplitude
Basdevant, Berger
PRL114 (2015) 192001

Mass:
ma1(1420) = 1411.8+1.0

−4.4 MeV/c2

Width:
Γa1(1420) = 158+8

−8 MeV/c2
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Towards another exotic: freed-isobar wave set
Already published

the analysis so far:
I Wave set: 88 waves
I Same data set
I Same Monte Carlo

Three waves with 0++ isobar
freed:

I 0−+0+[ππ]0++πS
I 1++0+[ππ]0++πP
I 2−+0+[ππ]0++πD

Replace 7 fixed-isobar waves

Published in Phys. Rev. D95
no. 3, (2017) 032004

Promising results
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Matching isobar quantum numbers

0−+0+ [ππ]S πS
0−+0+f0 (980)πS
0−+0+f0 (1500)πS

 0−+0+[ππ]0++πS

1++0+ [ππ]S πP
1++0+f0 (980)πP

}
1++0+[ππ]0++πP

2−+0+ [ππ]S πD
2−+0+f0 (980)πD

}
2−+0+[ππ]0++πD.
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Freed-isobar wave set
Extended wave set

credit: Fabian Krinner (PhD work, cf. HADRON2017 talk), Dima Ryabchikov

Extend freed-isobar wave set

Chose 11 biggest waves to have freed dynamic isobar amplitudes
I Minimize leakage

Add spin exotic 1−+1+[ππ]1−−πP wave
I Wave of major interest

Replacing 16 fixed-isobar waves

12 freed- and 72 fixed-isobar waves in the model

40 MeV bin width in m3π from 0.5 to 2.5 GeV

50 bins in m3π, four bins in t ′: 4× 50 = 200 independent bins
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Freed isobar wave set

0−+0+[ππ]0++πS 2−+0+[ππ]0++πD 1++1+[ππ]1−−πS

0−+0+[ππ]1−−πP 2−+0+[ππ]1−−πP 2−+1+[ππ]1−−πP

1++0+[ππ]0++πP 2−+0+[ππ]1−−πF 2++1+[ππ]1−−πD

1++0+[ππ]1−−πS 2−+0+[ππ]2++πS
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Zero mode in the spin-exotic wave
What is a “zero mode”?

Freed-isobar analysis: much more freedom than fixed-isobar analysis
→ introduces continuous mathematical ambiguities in the model

“Zero mode”: dynamic isobar amplitudes Ω (mπ−π+ )

that do not contribute to the total 3π-amplitude

Spin-exotic wave:

ψ (~τ) Ω (mπ−π+ ) + Bose S. = 0

at every point ~τ in phase space
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Zero mode in the spin-exotic wave
Mathematical origin

Process: X− → ξπ−3 → π−1 π
+
2 π
−
3 .

Partial-wave amplitude

ψ (~τ) Ω (m12) + Bose S. = 0 (1)

Tensor formalism (X− rest frame) for 1−+

ψ (~τ) ∝ ~p1 × ~p3

Bose symmetrization (π−1 ↔ π−3 ):

~p1 × ~p3 Ω (m12) + ~p3 × ~p1 Ω (m23) = ~p1 × ~p3 [Ω (m12)− Ω (m23)]

Fulfill (1) at every point in phase space⇒ Ω (mξ) = const.

then intensity is not altered:∣∣ψ (~τ) ∆phys (mξ) + B. S.
∣∣2 =

∣∣ψ (~τ)
[
∆phys (mξ) + CΩ (mξ)

]
+ B. S.

∣∣2
for any complex-valued zero-mode coefficient C
C: complex-valued ambiguity in the model
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−
3 .

Partial-wave amplitude

ψ (~τ) Ω (m12) + Bose S. = 0 (1)

Tensor formalism (X− rest frame) for 1−+

ψ (~τ) ∝ ~p1 × ~p3

Bose symmetrization (π−1 ↔ π−3 ):
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]
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Zero mode in the spin-exotic wave
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Zero mode in the spin-exotic wave
Effects on dynamic isobar amplitudes
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Zero mode in the spin-exotic wave
Effects on dynamic isobar amplitudes
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Zero mode in the spin-exotic wave
Effects on dynamic isobar amplitudes
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Zero mode in the spin-exotic wave
Effects on dynamic isobar amplitudes
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Zero mode in the spin-exotic wave
Effects on dynamic isobar amplitudes
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Zero mode in the spin-exotic wave
Effects on dynamic isobar amplitudes
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Zero mode in the spin-exotic wave
Effects on dynamic isobar amplitudes
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Zero mode in the spin-exotic wave
Effects on dynamic isobar amplitudes
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Zero mode in the spin-exotic wave
Effects on dynamic isobar amplitudes

∆BW (mπ−π+ ) + CΩ (mπ−π+ )
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Effects on dynamic isobar amplitudes
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Zero mode in the spin-exotic wave
Effects on dynamic isobar amplitudes
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Zero mode in the spin-exotic wave
Effects on dynamic isobar amplitudes
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Zero mode in the spin-exotic wave
Effects on dynamic isobar amplitudes

∆BW (mπ−π+ ) + CΩ (mπ−π+ )
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Zero mode in the spin-exotic wave
Resolving the ambiguity

Zero-mode contribution: ~T 0 = {Ω (mbin)}

Fitted solution possibly shifted from the (wanted) physical solution

~T phys = ~T fit + C ~T 0

Find matching C by introducing constraints

In the case of the 1−+1+[ππ]1−−πP wave:

I use ρ (770) BW with the fixed-isobar parameters
I use ρ (770) BW with floating parameters

Final results: weighted average of these two methods

Note: this fixes only one single complex-valued d.o.f.
nbins−1 complex-valued d.o.f. remain free.
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The spin-exotic wave

Example: One bin in (m3π, t ′)
I 1.58 < m3π < 1.62 GeV/c2

I 0.326 < t ′ < 1.000 (GeV/c)2

Zero-mode ambiguity resolved with ρ (770)
used as constraint

Dynamic isobar amplitude dominated by
ρ (770)

Still significant deviations from a pure
Breit-Wigner shape
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The spin-exotic wave

Example: One bin in (m3π, t ′)
I 1.58 < m3π < 1.62 GeV/c2

I 0.326 < t ′ < 1.000 (GeV/c)2

Zero-mode ambiguity resolved with ρ (770)
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Still significant deviations from a pure
Breit-Wigner shape
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The 1−+1+ρ(770)πP wave

at low t ′ very weak resonant component
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The 1−+1+ρ(770)πP wave

at higher t ′ resonant component dominant
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The 1−+1+ρ(770)πP wave
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The 1−+1+ρ(770)πP wave
Phase motion
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resonance with mass ∼1600 MeV/c2 very broad Γ ∼600 MeV/c2
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Conclusions and Outlook

COMPASS on exotic mesons:
46 million events for π−p → p π−π+π− analyzed
partial-wave decomposition with 88 waves
two exotic signals analyzed:

I a1(1420) supernumerous
F matches a Breit-Wigner description with Γ = 158 MeV/c2

F position at K∗K̄ threshold → rescattering interpretation
F and/or Deck interference

I π1(1600) spin-exotic
F at small t ′ dominant background
F slow phase motion
F much broader than previous analyses

ongoing developments
I refine non-resonant (Deck) background description
I conclude on the “de-isobaring”

more channels to come, including π0, η, K
lower statistics for incoming K− beams
→ dedicated future option: dedicated RF-separated beam
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Thank you for your attention!
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