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The COMPASS experiment

Commom Muon Proton Apparatus for Structure and Spectroscopy

o 3

' CERN SPS: protons ~ 450 GeV. =~ (0 o0 ool
o tertiary muons: 4-107 / s
2002-04, 2006-07, 2010-11, 2016: nucleon spin structure

@ secondary 7, K, p": up to 2:107/s (typ. 5-10%/s)
Nov. 2004, 2008-09, 2012, 2015:
hadron spectroscopy, Primakoff, Drell-Yan
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Diffractive 3w production

@ Cowmpass: World’s currently largest
data set for the diffractive process
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Diffractive 3w production

@ Cowmpass: World’s currently largest
data set for the diffractive process

- -t = Tlheam X Un
P+ Theam P +T T'T b i
. r
taken in 2008
(~ 46 - 10° exclusive Events) Prasge Precoi
x10°
@ Exclusive measurement < odf 2a(1320)
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@ Squared four-momentum transfer t' by M
Pomeron P @ oo 1670
@ Rich structure in #=7" 7~ mass spectrum: o1
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Diffractive 3w production

@ Cowmpass: World’s currently largest
data set for the diffractive process

— i Jr —
p + Theam - P tmow Thachelor

taken in 2008
(~ 46 - 10° exclusive Events)

@ Exclusive measurement

@ Squared four-momentum transfer t' by
Pomeron P

@ Rich structure in 7~ 77~ mass spectrum:

Intermediary states X~

@ Also structure in 7™~ subsystem:
Intermediary states ¢ (Isobar)
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Wanted: really good fits

{NICE TRY}
"

-4

(1) all details of the three-body phase-space shall be matched,
including momentum transfer dependence

(2) Breit-Wigner resonances + smoother non-resonant contributions
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The isobar model

@ Intermediate states appear as dynamic amplitudes A (m):
Complex-valued functions of invariant mass m
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The isobar model

@ Intermediate states appear as dynamic amplitudes A (m):
Complex-valued functions of invariant mass m

@ Simplest example: Breit-Wigner amplitude with mass my and width y:

molo

Apw (M) =
aw () mg — m? — imlo

@ Analysis in bins of my- = ms,.. Dynamic amplitude of X~ inferred form
the data

@ Dynamic amplitude of £: Model input in conventional PWA
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The isobar model

Dynamic isobar amplitude: p (770), J©

width Ig:

erred form

PRI SRR RN RATIN SR
. 1.6 1.8 2
Mass of the TrT System (GeV/c?)
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Dynamic isobar amplitude: ps3 (1690)

JPC
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The isobar model

Intensity

erred form

ol b b by by
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Intensity

Jan Friedrich (TU Munich)
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The isobar model

@ Intermediate states appear as dynamic amplitudes A (m):
Complex-valued functions of invariant mass m

@ Simplest example: Breit-Wigner amplitude with mass my and width y:

molo

Apw (M) =
aw () mg — m? — imlo

@ Analysis in bins of my- = ms,.. Dynamic amplitude of X~ inferred form
the data

@ Dynamic amplitude of £: Model input in conventional PWA

@ True dynamic isobar amplitudes may differ from the model
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The isobar model

@ Intermediate states appear as dynamic amplitudes A (m):
Complex-valued functions of invariant mass m

@ Simplest example: Breit-Wigner amplitude with mass my and width y:

molo

Apw (M) =
aw () mg — m? — imlo

@ Analysis in bins of my- = ms,.. Dynamic amplitude of X~ inferred form
the data

@ Dynamic amplitude of £: Model input in conventional PWA
@ True dynamic isobar amplitudes may differ from the model

@ Free parameters in dynamic isobar amplitudes computationally unfeasible
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Freed isobars: powerful test of the assumptions

Step-like isobar amplitudes

@ Total intensity in each single (ms,, t')-bin
waves

I(7) = Z Ti [0i (7) A (M- 7+) + Bose Symm. | 2

as function of phase-space variables 7
Fit parameters: Production amplitudes 7;
Fixed: Angular distributions ¢ (7), dynamic isobar amplitudes A; (m,.- .+)
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Freed isobars: powerful test of the assumptions

Step-like isobar amplitudes

@ Total intensity in each single (ms,, t')-bin
waves

I(7) = Z Ti [0i (7) A (M- 7+) + Bose Symm. | 2

as function of phase-space variables 7
Fit parameters: Production amplitudes 7;
Fixed: Angular distributions ¢ (7), dynamic isobar amplitudes A; (m,.- .+)

@ Fixed isobar amplitude gets replaced by a set of bins:

A (M) = E TP AP (M) = [w] e
- —_———
bins

1 inthe bin,
0 otherwise
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Freed isobars: powerful test of the assumptions

Step-like isobar amplitudes

@ Total intensity in each single (ms,, t')-bin
waves

7) = Z Ti [¥i (F) &j (Mg~ 1+ ) + Bose Symm.] | 2

as function of phase-space variables 7
Fit parameters: Production amplitudes 7;
Fixed: Angular distributions ¢ (7), dynamic isobar amplitudes A; (m,.- .+)

@ Fixed isobar amplitude gets replaced by a set of bins:

A (M) = E TP AP (M) = [w] e
- —_———
bins

1 inthe bin,
0 otherwise
@ Each bin introduces an independent Partial Wave 7;,"'* = 7;.7;":

waves

Z ZTbm Y AP™ (m,— 1) + Bose S.] 2

i bins
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Freed isobars: powerful test of the assumptions

Step-like isobar amplitudes
@ Total intensity in each single (ms,, t')-bin
lllustration

Z(7)

as function of p
Fit parameters:
Fixed: Angular

@ Fixed isobar a
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Partial-Wave Analysis

2
T(7) = |3 T (7) A (1)
-
Waves specified by: T [JPC M| Bach_elor
PC b \s\ — [L] Z+
JPCMEerL | N
Ptarget / \ Precoil
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Partial-Wave Analysis

2

T(7) = |3 T (7) A (1)
-
Waves specified by: T [JPC M| Bach_elor
PC b \s\ — [L] Z+
JPCMEerL | N
Ptarget / \ Precoil

@ JC: spin and eigenvalues under parity and charge conjugation
of X~ (or its multiplet)

@ Me: spin projection and naturality of the exchange particle

@ ¢: the fixed or freed isobar, e.g. p (770) or [r7]{--

@ w: the bachelor =~ (always the same)

@ L: orbital angular momentum between isobar and bachelor pion

88 waves needed to describe the data (“hand-selected”)
interference terms — get (relative) phases
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Step 1: Partial-Wave Analysis

Selected Waves (1 of 88) in two of the 11 independent ' bins
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Step 1: Partial-Wave Analysis

Selected Waves (2 of 88) in two of the 11 independent ' bins

Low t/
106 1°%0% p(770) 7 S 10° 271" p(770) 7 D
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Step 1: Partial-Wave Analysis

Selected Waves (3 of 88) in two of the 11 independent ' bins

Low t’
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Step 1: Partial-Wave Analysis

Selected Waves (4 of 88) in two of the 11 independent ' bins

Low t’
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Step 2: Resonance model fit

0100 <1'<0.113 (GeV/L)Z my, [GeV/c?]
51[5&\”\."'. 5
5} - 1
= AL 3
5 = I
I & 1S
= I
Z
)

E

©p = m-n wp (COMPASS 2008)
Mass-independent fit
Mass-dependent fit

resonant

non-resonant
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Step 2: Resonance model fit

0.724 < ' < 1.000 (Ge V/c)? my, [GeV/c?]
0.100 < ' < 0.113 (GeV/c)?

A
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=

e
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x11 bins in t/

©p = m-n wp (COMPASS 2008)
Mass-independent fit
Mass-dependent fit

resonant

non-resonant
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wards the first exotic signal: JP¢ = 1++ sector

0.100 < 7' < 0.113 (GeV/c) my, [GeV/e?]
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Towards the first exotic signal: J©¢ = 1*++ sector
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Towards the first exotic signal: J©¢ = 1*++ sector
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Towards the first exotic signal: J©¢ = 1*++ sector

0.100 < 7' < 0.113 (GeV/c) my, [GeV/e?]
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ai (1 260)

10° 7 p — nmxn n'p (COMPASS 2008)

@ resonance parameters do not = & Ry
depend on production mechanism = 2% 0.100 ! 51{)3(72}0) “;
> [ . <1'<0. (GeV/c)
= r Mass-independent fit
S 200 Mass-dependent fit
g L resonant
2 [ non-resonant
‘B 150
c L
8 L
=
lOOj
50
IS E TN A

06 08 1 12 14 16 18 2 22 24
my, [GeV/c?]
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ai (1 260)

10° 7 p — nmxn n'p (COMPASS 2008)

@ resonance parameters do not ~ £ et
depend on production mechanism = 2% 0.100 ! 001;)3(72}0)\,7/:5
] > [ . <t'< 0. (GeV/c)
@ couplings and non-resonant parts = [ Mass-independent fit
may vary with ¢ 8 2 R 75 g
E, [ non-resonant
‘B 150+
g 150
8 L
=
lOOj
50F
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ai (1 260)

10° 7 p — nmxn n'p (COMPASS 2008)

X

° (rjesonadnce parzme?ers do r;]ot . T asol 10" p(770) 7 S

epend on production mechanism > 0.100 < 1 < 0.113 (GeV/ey

@ couplings and non-resonant parts = [ Mass-independent fit

; / < 200~ Mass-dependent fit

may vary with ¢ S resonant

@ t'-resolved analysis: better I non-resonant
disentanglement of resonantand 2 *°1
non-resonant parts E 0
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ai (1 260)

«10° T p — m - tp (COMPASS 2008)

@ resonance parame?ers do not . & 10" p(770) 7 S
depend on production mechanism = [ 0.262 < 1'<0.326 (GeV/cy
i o 120~ ' o

@ couplings and non-resonant parts = [ 4  Mass-indepChdgnt fit

may vary with ' & 1000 Masggondent ot

@ t'-resolved analysis: better E» Soi non-resonant
disentanglement of resonantand & "}
non-resonant parts E o
40
201
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ai (1 260)

@ resonance parameters do not o MO FPOTEAP f?oﬁdpgsfof‘jf?

depend on production mechanism % sof- Y t'<0.7£1 (GeVIcY

@ couplings and non-resonant parts = [ Mass-independent fit

may vary with t/ & a0 Mass-dependent fit

N r resonant

@ t'-resolved analysis: better = ; non-resonant
disentanglement of resonant and % 30
non-resonant parts E I
201
101

el @ Loy LA 1 IO

e
06 08 1 12 14 16 1.8 2 22 24
my, [GeV/c?]
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ai (1 260)

np = nn xwtp (COMPASS 2008)

@ resonance parameters do not

depend auct hani & 7000F 10" p(770) 7 S
epend on production mechanism > 0.724 < ' < 1000 (GeV/c):
@ couplings and non-resonant parts = %% | | Mass-independent fit
may vary with ¢ 85000?— %ﬂ Mass_depe?;ilgait
@ t'-resolved analysis: better E» F ! non-resonant
disentanglement of resonant and £ 4000 §
non-resonant parts = 30001
; }
2000F
: i
1000f- +
[ i
%M*t i M A

06 08 1 12 14 16 1.8 2 22 2.4
my, [GeV/c?]
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ai (1 260)

np = nn xwtp (COMPASS 2008)

@ resonance parameters do not

) . &, 7000 170" p(770) 7 S
depend on production mechanism § ; 0724 <1 < 1.050( (Ge)V’/[c)z
@ couplings and non-resonant parts = 6000 ) Mass-independent fit
may vary with ¢ & 50000 +ﬂ Masggondent ot
@ t'-resolved analysis: better 5 F | non-resonant
disentanglement of resonant and £ %% f
non-resonant parts = 3000F
@ a1(1260) reproduced ; !
mit = 1298%13 MeV/c? 2000
mPPG= 123040 MeV/c? 10001 )
Mt = 4039 MeV/c? S
r LA o
[PPG ~250 — 600 MeV/c? Nl N

06 08 1 12 14 16 1.8 2 22 24
my, [GeV/c?]
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ai (1 260)

np = nn xwtp (COMPASS 2008)

@ resonance parameters do not

) . &,7000F 170" p(770) & S
depend on production mechanism % ; 0.724 < ' < 1,000 (GeV/c)
@ couplings and non-resonant parts = %% ) Mass-independent fit
: S F Mass-dependent fit
may vary with ¢ 5000/ +ﬂ e ont
@ t'-resolved analysis: better z I | non-resonant
disentanglement of resonant and £ %% f
non-resonant parts = 3000F
@ a4(1260) reproduced: ; |
mit = 1298713 MeV/c? 20001
mPPG= 1230440 MeV/c? 10001 )
fi 0 —
rI::‘DG ~ 4O3t1oo MeV/CZ E M* tJ'{M oe
rPPe =250 — 600 MeV/c? 06 08 1 12 14 16 18 2 22 24
@ weak signal for a;(1640) my, [GeV/c?]
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a;(1420)

a new - quite exotic - signal

F200F T70° £(980) 7P — 1*0*p(770)T
S150-
= 4H
&1£, - «wﬂﬁuw‘}ﬁ wiv
of
s x10°
e & 25 0 170" £ (980) TP
150 f ' ) ° - 0( ) T
mo ﬁggg:g:gg;gggz;; > @ 0.1<t <10 (Gev/cy’
~250F | <t< © L
l 12 14 16 1‘8 2 22 E 207 (1) MOdd curve
My, [Gevie?] Q r (2) a,(1420) resonance
= (3) Non-resonant term
2 15~
‘D L
g |
= 10
5-
0 Tt e T U]

1 12 14 16 18 2 22
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a;(1420)

a new - quite exotic - signal

B

Intensity / (20 MeV/c?)
G 8
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o

13,1

x10°
471 p(770) TG 4
F 01<t <10(GevioR N
(1) Model curve

(2) a,(2040) resonance
£ (3) Non-resonant term

o

1 12 14 16 18
[ [Gevlcz]

FT7071(980) 7P — 4T p(770) G

7 4 0100<t <0.113 (Gevicy?
r —+0.164 < t <0.189 (GeV/c)?
+ 0. 449 <t < 0.724 (Gev/c)2

l 12141618 2 22
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(1) Model curve

(2) &,(1420) resonance
(3) Non-resonant term
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a;(1420)

a new - quite exotic - signal

x10°
@ new signal: a;(1420) & 25- 170" £(980) 7P
@ decay into £(980)x < I 0.1<t <1.0(GeV/cy
= ook (1) Model curve
Q r (2) a,(1420) resonance
Z (3) Non-resonant term
2> 15+
£ 0
§ [
£ 10+
5 e
OJ o i R SN i R R
1 12 14 16 18 2 22

m,,. [GeV/cY
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a1(1420)

K*(892)

a new - quite exotic - signal K*(892)

a1(1260)
— K

£5(980)

@ new signal: a;(1420) ? 4or 170" 1(980) TP
@ decay into £,(980)x 3 0.1<t <10(Gev/cy
@ possible explanations: g 20 (;) MOdez'OC“r"e
» triangle diagram Mikha- & (3) 21(14 )rescintance
senko, Ketzer, Sarantsev T (3) Non-resonant term
PRD91 (2015) 094015 E!
» two-channel unitarized o L
Deck amplitude Z 10~
Basdevant, Berger r
PRL114 (2015) 192001 [
5? ¥ty
OinA \.‘\\\\\\ T ‘\\\\\‘\\T-

1 12 14 16 18 2 22
m,,. [GeV/cY
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a1(1420)

a new - quite exotic - signal K*(892)

K*(892) ——
== K
1(1260) “
— K

£5(980)

™

@ new signal: a;(1420) ? 4or 170" 1(980) TP
@ decay into £(980)x < I 0.1<t <10 (GeV/cy
@ possible explanations: = 20 (1) Model curve
» triangle diagram Mikha- ) r (? ;1(1420) rescintance
senko, Ketzer, Sarantsev N (3) Non-resonant term
PRD91 (2015) 094015 Z F
» two-channel unitarized o L
Deck amplitude £ 10
Basdevant, Berger r
PRL114 (2015) 192001 [
@ Mass: 5:’
My, (1420) = 1411.87, 4 MeV /2 -
Jtn: 1702 14 16 18 2 22
I'a1(1420) = 158t2 MeV/C2 : : 6 8 ;

m,,. [GeV/cY
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Towards another exotic: freed-isobar wave set

Already published

@ the analysis so far:
» Wave set: 88 waves
» Same data set
» Same Monte Carlo
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Towards another exotic: freed-isobar wave set

Already published

@ the analysis so far:

» Wave set: 88 waves
» Same data set
» Same Monte Carlo

@ Three waves with 0+ isobar
freed:
» 070" [nm]p++7S
» 170  [rr]gre P

» 2710 [nr]o++mD
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Towards another exotic: freed-isobar wave set

Already published

@ the analysis so far:

» Wave set: 88 waves
» Same data set
» Same Monte Carlo

@ Three waves with 0™+ isobar
freed:
» 070" [nm]p++7S
» 170  [rr]gre P
» 2710 [nr]o++mD

@ Replace 7 fixed-isobar waves
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Towards another exotic: freed-isobar wave set

Already published

@ the analysis so far:
» Wave set: 88 waves

Matching isobar quantum numbers
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Towards another exotic: freed-isobar wave set

Already published

@ the analysis so far:
» Wave set: 88 waves 070" [ . TS g8

» Same data set T [ 0194<1 <0326 (GeV/cy? 022

» Same Monte Carlo % H 0.2

= 0.18

@ Three waves with 0** isobar EE I Bl 0.16

freed: ~T 0.14

» 00 [rr]ge+ 7S [ 812

» 1770 [rr]grr 7P 1; w 0.08

» 2710 [nr]o++mD i 0.06

@ Replace 7 fixed-isobar waves 0.5~ e 8-8‘2‘
@ Published in Phys. Rev. D95 o5 I 15 3 350

no. 3, (2017) 032004 m,. [Gev/c?]

@ Promising results
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Freed-isobar wave set
Extended wave set

credit: Fabian Krinner (PhD work, cf. HADRONZ2017 talk), Dima Ryabchikov

@ Extend freed-isobar wave set
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Freed-isobar wave set
Extended wave set

credit: Fabian Krinner (PhD work, cf. HADRONZ2017 talk), Dima Ryabchikov

@ Extend freed-isobar wave set

@ Chose 11 biggest waves to have freed dynamic isobar amplitudes
» Minimize leakage
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Freed-isobar wave set
Extended wave set

credit: Fabian Krinner (PhD work, cf. HADRONZ2017 talk), Dima Ryabchikov

@ Extend freed-isobar wave set

@ Chose 11 biggest waves to have freed dynamic isobar amplitudes
Freed isobar wave set
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Freed-isobar wave set
Extended wave set

credit: Fabian Krinner (PhD work, cf. HADRONZ2017 talk), Dima Ryabchikov

@ Extend freed-isobar wave set

@ Chose 11 biggest waves to have freed dynamic isobar amplitudes
» Minimize leakage

@ Add spin exotic 1~ 1" [r7]{-- 7P wave
» Wave of major interest
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Freed-isobar wave set
Extended wave set

credit: Fabian Krinner (PhD work, cf. HADRONZ2017 talk), Dima Ryabchikov

@ Extend freed-isobar wave set

@ Chose 11 biggest waves to have freed dynamic isobar amplitudes
» Minimize leakage

@ Add spin exotic 1~ 1" [r7]{-- 7P wave
» Wave of major interest

@ Replacing 16 fixed-isobar waves
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Freed-isobar wave set
Extended wave set

credit: Fabian Krinner (PhD work, cf. HADRONZ2017 talk), Dima Ryabchikov

@ Extend freed-isobar wave set

@ Chose 11 biggest waves to have freed dynamic isobar amplitudes
» Minimize leakage

@ Add spin exotic 1~ 1" [r7]{-- 7P wave
» Wave of major interest

@ Replacing 16 fixed-isobar waves

@ 12 freed- and 72 fixed-isobar waves in the model
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Freed-isobar wave set
Extended wave set

credit: Fabian Krinner (PhD work, cf. HADRONZ2017 talk), Dima Ryabchikov

@ Extend freed-isobar wave set

@ Chose 11 biggest waves to have freed dynamic isobar amplitudes
» Minimize leakage

@ Add spin exotic 1~ 1" [r7]{-- 7P wave
» Wave of major interest

@ Replacing 16 fixed-isobar waves
@ 12 freed- and 72 fixed-isobar waves in the model
@ 40 MeV bin width in ms, from 0.5 to 2.5 GeV

@ 50 bins in ms,, four bins in t': 4 x 50 = 200 independent bins
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Zero mode in the spin-exotic wave

What is a “zero mode”?

@ Freed-isobar analysis: much more freedom than fixed-isobar analysis
— introduces continuous mathematical ambiguities in the model
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Zero mode in the spin-exotic wave

What is a “zero mode”?

@ Freed-isobar analysis: much more freedom than fixed-isobar analysis
— introduces continuous mathematical ambiguities in the model
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Zero mode in the spin-exotic wave

What is a “zero mode”?

@ Freed-isobar analysis: much more freedom than fixed-isobar analysis
— introduces continuous mathematical ambiguities in the model

@ “Zero mode”: dynamic isobar amplitudes Q (m, - +)
that do not contribute to the total 3r-amplitude

@ Spin-exotic wave:
P (T)Q(My-7+) +Bose S. =0

at every point 7 in phase space
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Zero mode in the spin-exotic wave

Mathematical origin
@ Process: X~ — {my — Ty Ty .
@ Partial-wave amplitude
P (7) Q(m2) + Bose S. =0 (1)

@ Tensor formalism (X~ rest frame) for 1=+

¥ (T) x Pt X Ps
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Zero mode in the spin-exotic wave

Mathematical origin

@ Process: X~ — {my — Ty Ty .
@ Partial-wave amplitude

P (7) Q(m2) + Bose S. =0 (1)
@ Tensor formalism (X~ rest frame) for 1=+
¥ (T) < P1 X Ps
@ Bose symmetrization (r; < 75 ):

Pt X P3 Q(mMy2) + P % P1 Q(mM23) = P1 x P3 [Q(mM2) — Q (mp3)]
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Zero mode in the spin-exotic wave

Mathematical origin
@ Process: X~ — {my — Ty Ty .
@ Partial-wave amplitude
P (T) Q(m2) +Bose S. =0 (1)
@ Tensor formalism (X~ rest frame) for 1=+
P (7) o< Pr % Pa
@ Bose symmetrization (r; < 75 ):
P1 % P3Q(M2) 4+ P3 x P1 Q(M23) = P1 X Ps [Q(M12) — Q2 (mMa3)]

@ Fulfill (1) at every point in phase space = Q (m¢) = const.
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Zero mode in the spin-exotic wave

Mathematical origin
@ Process: X~ — {my — Ty Ty .
@ Partial-wave amplitude
P (7) Q(m2) + Bose S. =0 (1)
@ Tensor formalism (X~ rest frame) for 1=+
¥ (T) < P1 X Ps
@ Bose symmetrization (r; < 75 ):
P1 x B3 Q2 (Mi2) + P x B Q(m2s) = Pr x B3 [Q(Mi2) — Q(mgs)]
@ Fulfill (1) at every point in phase space = Q (m¢) = const.
@ then intensity is not altered:
| (7) AP (mg) + B. S.|% = [¢ (7) [AP™* (me) + €Q (mg)] + B. S.|?

for any complex-valued zero-mode coefficient C
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Zero mode in the spin-exotic wave

Mathematical origin

@ Process: X~ — {my — Ty Ty .
@ Partial-wave amplitude

P (7) Q(m2) + Bose S. =0 (1)
@ Tensor formalism (X~ rest frame) for 1=+
P (7) o< Pr % Pa
@ Bose symmetrization (r; < 75 ):
P1 x P32 (Mi2) + P3 x Pr Q(Ma3) = Pr x P3 [Q (M12) — Q2 (m23)]
@ Fulfill (1) at every point in phase space = Q (m¢) = const.
@ then intensity is not altered:
| (7) AP (mg) + B. S.|% = [¢ (7) [AP™* (me) + €Q (mg)] + B. S.|?

for any complex-valued zero-mode coefficient C
@ C: complex-valued ambiguity in the model
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Zero mode in the spin-exotic wave

Effects on dynamic isobar amplitudes

Apw (mﬂ.—ﬂ-+) +CQ (mﬂ-—ﬂ-+)
C = 0.00 + 0.00/

1.0

0.8}

I4pwl?
S
[@))
Im(4pw)

0.2}

00 ! ! ! ! ! ! | ! !
04 06 08 10 12 14 -04 -02 00 02 04

M-+ [GeV /2] Re(4pw)

All describe the same 3r-intensity
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Zero mode in the spin-exotic wave

Effects on dynamic isobar amplitudes

Apw (mﬂ.—ﬂ-+) +CQ (mﬂ-—ﬂ-+)
C =-0.01+0.08/

1.0

0.8

0.6

I4pwl?
Im(4pw)

0.4

0.2

0.0

I
00 ! ! ! ! I ! ! | ! !
04 06 08 10 12 14 -04 -02 0.0 O 0.4

M-+ [GeV /2] Re(4pw)

All describe the same 3r-intensity
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Zero mode in the spin-exotic wave

Effects on dynamic isobar amplitudes

Apw (mﬂ.—ﬂ-+) +CQ (mﬂ-—ﬂ-+)
C =-0.05+0.15/

1.0

0.8}

0.6F

I4pwl?
Im(4pw)

0.4+

02F

00f

I
00 ! ! ! ! ! L ! ! | ! !
04 06 08 10 12 14 -04 -02 0.0 O 0.4

M-+ [GeV /2] Re(4pw)

All describe the same 3r-intensity
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Zero mode in the spin-exotic wave

Effects on dynamic isobar amplitudes

Apw (mﬂ.—ﬂ-+) +CQ (mﬂ-—ﬂ-+)
C=-0.10+0.20/

1.0

0.8

2
[4Bw|

0.4+

Im(4pw)

T
|
|
|
|
|
|
0.6 } ]
|
|
|
|
02f }
|
|

00f

00 ! ! ! ! ! ! ! ! ! !
04 06 08 10 12 14 -04 -02 00 02 04

M-+ [GeV /2] Re(4pw)

All describe the same 3r-intensity
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Zero mode in the spin-exotic wave

Effects on dynamic isobar amplitudes

Apw (mﬂ.—ﬂ-+) +CQ (mﬂ-—ﬂ-+)
C=-0.17+0.24}

| | | | 1.0/ | |

0.8}

0.6F

04 \

02F

I4pwl?
Im(4pw)

00f

00 ! ! ! ! ! ! ! ! ! !
04 06 08 10 12 14 -04 -02 00 02 04

M-+ [GeV /2] Re(4pw)

All describe the same 3r-intensity
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Zero mode in the spin-exotic wave

Effects on dynamic isobar amplitudes

Apw (mﬂ.—ﬂ.+) +CQ (mﬂ.—ﬂ.+)
C=-0.25+0.25/

1.0

0.8}

0.6F

I4pwl?
Im(4pw)

0.4 ¢

02F

I
0.0 ! L ! | !

00f

04 06 08 1.0 12 14 -04 -02 00 02 04
M+ [GeV /2] Re(dpw)

All describe the same 3r-intensity
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Zero mode in the spin-exotic wave

Effects on dynamic isobar amplitudes

Apw (mﬂ.—ﬂ-+) +CQ (mﬂ-—ﬂ-+)
C=-0.33+0.24i

1.0

0.8}

0.6F

I4pwl?
Im(4pw)

04} ]

|

02f | ]
|
|

00f

I
00 ! ! ! ! ! ! ! ! | ! !
04 06 08 10 12 14 -04 -02 0.0 O 0.4

M-+ [GeV /2] Re(4pw)

All describe the same 3r-intensity
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Zero mode in the spin-exotic wave

Effects on dynamic isobar amplitudes

Apw (mﬂ.—ﬂ.+) +CQ (mﬂ.—ﬂ.+)
C =-0.40 +0.20/

1.0

0.8}

0.6F

I4pwl?
Im(4pw)

0.4+

02 [

0.0 ! L ! !

00f
|

04 06 08 1.0 12 14 -04 -02 00 02 04
M+ [GeV /2] Re(dpw)

All describe the same 3r-intensity
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Zero mode in the spin-exotic wave

Effects on dynamic isobar amplitudes

Apw (mﬂ.—ﬂ.+) +CQ (mﬂ.—ﬂ.+)
C=-0.45+0.15/

1.0

0.8}

0.6F

I4pwl?
Im(4pw)

0.4+

02t

I
0.0 ! L ! | !

00f

04 06 08 1.0 12 14 -04 -02 00 02 04
M+ [GeV /2] Re(dpw)

All describe the same 3r-intensity
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Zero mode in the spin-exotic wave

Effects on dynamic isobar amplitudes

Apw (mﬂ.—ﬂ-+) +CQ (mﬂ-—ﬂ-+)
C=-0.49+0.08/

1.0

0.8

0.6

I4pwl?
Im(4pw)

0.4

0.2

0.0

I
00 ! ! ! ! ! ! ! ! | ! !
04 06 08 10 12 14 -04 -02 0.0 O 0.4

M-+ [GeV /2] Re(4pw)

All describe the same 3r-intensity
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Zero mode in the spin-exotic wave

Effects on dynamic isobar amplitudes

Apw (mﬂ.—ﬂ-+) +CQ (mﬂ-—ﬂ-+)
C = —0.50 + 0.00/

1.0

0.8

0.6

I4pwl?
Im(4pw)

0.4

0.2

0.0

I
00 ! ! ! ! ! ! ! ! | ! !
04 06 08 10 12 14 -04 -02 0.0 O 0.4

M-+ [GeV /2] Re(4pw)

All describe the same 3r-intensity
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Zero mode in the spin-exotic wave

Effects on dynamic isobar amplitudes

Apw (mﬂ.—ﬂ-+) +CQ (mﬂ-—ﬂ-+)
C =-0.49 —0.08/

1.0
1.0
0.8
0.8
o E 0.6
2 0.6 s
Sl E 04
0.4
0.2
0.2 ]
0.0 ‘
0.0 . . . . . : . s '
04 06 08 1.0 12 14 -04 -02 00 02 04
M+ [GeV /2] Re(dpw)

All describe the same 3r-intensity
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Zero mode in the spin-exotic wave

Effects on dynamic isobar amplitudes

Apw (mﬂ.—ﬂ-+) +CQ (mﬂ-—ﬂ-+)
C=-0.45-0.15/

1.0
1.0}
0.8
0.8}
o E 0.6
Z 06} s
Sl E 04
04}
0.2
0.2}
0.0
0.0 . . . . : . s '
04 06 08 1.0 12 14 -04 -02 00 02 04
M+ [GeV /2] Re(dpw)

All describe the same 3r-intensity
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Zero mode in the spin-exotic wave

Effects on dynamic isobar amplitudes

Apw (mﬂ.—ﬂ-+) +CQ (mﬂ-—ﬂ-+)
C =-0.40 —0.20/

1.0
1.0}
0.8
0.8}
o 3 06
2 0.6F N
3 E 04
04Ff
0.2
02f
0.0
0.0 == ' '

Il Il 1 1 Il 1
04 06 08 1.0 12 14 -04 -02 0.0 02
M+ [GeV /2] Re(dpw)

All describe the same 3r-intensity
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Zero mode in the spin-exotic wave

Effects on dynamic isobar amplitudes

Apw (mﬂ.—ﬂ-+) +CQ (mﬂ-—ﬂ-+)
C=-0.33-0.24/

1.0} | 1
1.0} ] ‘
0.8] | 1
0.8} |
o e 0.6 1
Z 06} )
3 E 04 1
04
0.2 ]
02f
oof /]
0.0 : s s s s s i s s
04 06 08 10 12 14 —04 -02 00 02 04

M-+ [GeV /2] Re(4pw)

All describe the same 3r-intensity
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Zero mode in the spin-exotic wave

Effects on dynamic isobar amplitudes

Apw (mﬂ.—ﬂ-+) +CQ (mﬂ-—ﬂ-+)
C=-0.25-0.25/

1.0
1.0} ]
0.8
0.8} ]
o E 0.6
Z 06} s
Sl E 04
04}
0.2
0.2}
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04 06 08 1.0 12 14 -04 -02 00 02 04
M+ [GeV /2] Re(dpw)

All describe the same 3r-intensity
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Zero mode in the spin-exotic wave

Effects on dynamic isobar amplitudes

Apw (mﬂ.—ﬂ-+) +CQ (mﬂ-—ﬂ-+)
C=-0.17 - 0.24}

1.0
1.0} 1
0.8
0.8} 1
o 2 06
2 3
3 E 04

0.2

0.0k -

00 1 I I I I I \ I I : I

04 06 08 1.0 12 14 -04 -02 00 02 04
M+ [GeV /2] Re(dpw)

All describe the same 3r-intensity
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Zero mode in the spin-exotic wave

Effects on dynamic isobar amplitudes

Apw (mﬂ.—ﬂ-+) +CQ (mﬂ-—ﬂ-+)
C=-0.10—0.20/
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All describe the same 3r-intensity

Jan Friedrich (TU Munich)

Exotics by ComMPASS

0.4

12 October 2017




Zero mode in the spin-exotic wave

Effects on dynamic isobar amplitudes

Apw (mﬂ.—ﬂ-+) +CQ (mﬂ-—ﬂ-+)
C =-0.05-0.15/
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Zero mode in the spin-exotic wave

Effects on dynamic isobar amplitudes

Apw (mﬂ.—ﬂ-+) +CQ (mﬂ-—ﬂ-+)
C =-0.01-0.08/
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Zero mode in the spin-exotic wave

Effects on dynamic isobar amplitudes

Apw (mﬂ.—ﬂ-+) +CQ (mﬂ-—ﬂ-+)
C = 0.00 + 0.00/
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Zero mode in the spin-exotic wave
Resolving the ambiguity

@ Zero-mode contribution: 70 = {Q (mMyin)}
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Zero mode in the spin-exotic wave

Resolving the ambiguity

@ Zero-mode contribution: 70 = {Q (mMyin)}
@ Fitted solution possibly shifted from the (wanted) physical solution

Foiws — it (70
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Zero mode in the spin-exotic wave

Resolving the ambiguity

@ Zero-mode contribution: 70 = {Q (mMyin)}
@ Fitted solution possibly shifted from the (wanted) physical solution

Foiws — it (70

@ Find matching C by introducing constraints
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Zero mode in the spin-exotic wave

Resolving the ambiguity

@ Zero-mode contribution: 70 = {Q (mMyin)}
@ Fitted solution possibly shifted from the (wanted) physical solution

Fois — 7 079
@ Find matching C by introducing constraints

@ In the case of the 1= 1% [rrx];-- 7P wave:

» use p(770) BW with the fixed-isobar parameters
» use p(770) BW with floating parameters
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Zero mode in the spin-exotic wave

Resolving the ambiguity

@ Zero-mode contribution: 70 = {Q (mMyin)}
@ Fitted solution possibly shifted from the (wanted) physical solution

Fois — 7 079
@ Find matching C by introducing constraints

@ In the case of the 1= 1% [rrx];-- 7P wave:

» use p(770) BW with the fixed-isobar parameters
» use p(770) BW with floating parameters

@ Final results: weighted average of these two methods
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Zero mode in the spin-exotic wave

Resolving the ambiguity

Zero-mode contribution: 70 = {Q (mMyin)}
Fitted solution possibly shifted from the (wanted) physical solution

Foiws — it (70

Find matching C by introducing constraints

@ In the case of the 1= 1% [rrx];-- 7P wave:

» use p(770) BW with the fixed-isobar parameters
» use p(770) BW with floating parameters

Final results: weighted average of these two methods

@ Note: this fixes only one single complex-valued d.o.f.
Npins—1 complex-valued d.o.f. remain free.
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Zero mode in the spin-exotic wave

Resolving the ambiguity

WLt B Xeoa Different constraints
@ Fitted solution p

@ Find matching ¢

@ Inthe case of t

» use p(770)
» use p(770)

@ Final results: we

@ Note: this fixes
nbins_‘I (
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The spin-exotic wave

@ Example: One bin in (ms,, t')
» 1.58 < m3, < 1.62GeV/c?

» 0.326 < t' < 1.000 (GeV/c)?

Im(7in) [(Events/(GeV/c?) /2]

x10°
6

Intensity [Events/(GeV/c?)]

x10°

2.0

1.58 < m3; < 1.62GeV/c? 17 1*[an];-- 7P
M Corrected zero mode Fixed shape
WM Uncorrected zero mode MMM Single methods

[0.326 <1’ < 1.000(GeV/c)*

L y N
"”--l = "'.. .. N

04 06 08 10 12 14
My [GeV/c?]

1.58 < m3; < 1.62GeV/c? 17 1*[nn)y-- 7P
Ml Corrected zero mode Fixed shape
M Uncorrected zero mode W Single methods

0326 <7 <1.000(GeV/c)*

-2.0 -1.5 -1.0 =05 0.0 05 .
Re(Thin) [(Events/(GeV/c?))!/2] X10°
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The spin-exotic wave

%100 1.58 < m3, < 1.62GeV /2 17 1*[zx];--7P
6 M Corrected zero mode Fixed shape
W Uncorrected zero mode WM Single methods

T 5[0326<r' < 1.000(GeV/c)?
2 {
%4» 4 4“
. s f
@ Example: One bin in (ms,, t') &3t J "
> 1.58 < ms. < 1.62GeV/c? £af oo
» 0.326 < t' < 1.000 (GeV/c)? 20 R p
o . NI
@ Zero-mode ambiguity resolved with p (770) 04 06 08 10 12 14

. Mg-r [GeV/c?]
used as constraint ,
x103 1.58 < ms3, < 1.62GeV/c* 17 *1*[nn])--7P
Ml Corrected zero mode Fixed shape
2.0 MM Uncorrected zero mode M Single methods

0.326 <1 < 1.000(GeV/c)2:

1L5F

Im(7in) [(Events/(GeV/c?) /2]

-2.0 -1.5 -1.0 =05 0.0 05 .
Re(Thin) [(Events/(GeV/c?))!/2] X10°
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The spin-exotic wave

%100 1.58 < m3, < 1.62GeV /2 17 1*[zx];--7P
M Corrected zero mode Fixed shape

_ 2.510.326 <’ < 1.000(GeV/c)*
N§ 20} ﬁ
8 !
. £ s} ty
@ Example: One bin in (ms,, t') : Q
> 1.58 < my, < 1.62GeV/c? gror g
» 0.326 < t' < 1.000 (GeV/c)? 2os! N
@ Zero-mode ambiguity resolved with p (770) 04 08 vt

used as constraint

x103 1.58 < m; < 1.62GeV/c? 17 1* [an]--7P
M Corrected zero mode Fixed shape

0.326 <7’ < 1.000(GeV/c)*
|

Im(T i) [(Events/(GeV/c?)!/2]

.
-1.0 -0.5 0.0 0.5 .
Re(Thin) [(Events/(GeV/c?))!/2] X10°
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The spin-exotic wave

%100 1.58 < m3, < 1.62GeV /2 17 1*[zx];--7P
M Corrected zero mode Fixed shape

.510.326 < ' < 1.000(GeV/c)?

N}
n

»
=)
T

@ Example: One bin in (ms,, t')
» 1.58 < m3, < 1.62GeV/c?
» 0.326 < t' < 1.000 (GeV/c)?

=)
T

Intensity [Events/(GeV/c2)]
o

I
n
T

@ Zero-mode ambiguity resolved with p (770) A
used as constraint

e
=)

X103 1.58 < ma; < 1.62GeV /2 17 1*[n], 7P
M Corrected zero mode Fixed shape

0.326 <7’ < 1.000(GeV/c)*
|

@ Dynamic isobar amplitude dominated by
p(770)

Im(T i) [(Events/(GeV/c?)!/2]

.
-1.0 -0.5 0.0 0.5 .
Re(Thin) [(Events/(GeV/c?))!/2] X10°
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The spin-exotic wave

%106 1.58 < ms, < 1.62GeV/c? 1~ 1*[nn],—-nP
[ Corrected zero mode Fixed shape
.510.326 < ' < 1.000(GeV/c)?

N}
n

Ind
=)
T

@ Example: One bin in (ms,, t')
» 1.58 < m3, < 1.62GeV/c?
» 0.326 < t' < 1.000 (GeV/c)?

=)
T

Intensity [Events/(GeV/c2)]
o

o
n
T

04 06 08 1.0 12 14
My [GeV/c?]

=3
=)

@ Zero-mode ambiguity resolved with p (770)
used as constraint

X103 1.58 < ma; < 1.62GeV /2 17 1*[n], 7P
M Corrected zero mode Fixed shape

@ Dynamic isobar amplitude dominated by g [T <TGV
p(770) g \
é 1O
@ Still significant deviations from a pure g
Breit-Wigner shape g o5
g 0.0}

.
-0 =05 0.0 0.5
Re(Thin) [(Events/(GeV /c)1/2] X107
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The 1-"1"p(770)7 P wave

7p = xoawtp (COMPASS 2008) [I7M17 p(770) 7 P - [4""T p(770) 7 G] (171" p(770) P = [4771" £(1270) 7 F]
g s000f I F p(770) & P ?200 L0100 < 1 < 0.113 (GeV/ey P 1 < <0.113 (GeVie)
Z 0100 < < 0113 {GeViey| = §=—24.6° 8¢ =899
= r } Mass-independent fit 150 H
o000 Mass-dependent fi I ||
I - ss=dependent fit I 100 \l
= [ | resonant - & }
g f i { Ry 1|‘,‘| |
2000 50 | Im Hy ‘|' 1
[ —~100) ] H t ‘
r 4
1000~ 150 ‘ * i ‘
r 1 o —2000- ‘hl'
vk hy T et L b b b b b b b
B 1 12 14 16 18 2 22 24 06 08 1 12 14 16 18 2 22 24 06 08 1 12 14 16 L8 2 2224
my [GeVie?] my [GeVie?] my, [GeVie?]

at low t' very weak resonant component
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The 1-"1"p(770)7 P wave

3000

=
232500

]
=

o
=
=

Intensity / (;

1000}

500

=

ap = a a xtp (COMPASS 2008)

[I7*1F p(770) 7 P]—[4 T p(770) & G]

(1 p(

710

) 7 P41 £(1270) 7 F)

my [GeV/ie?]

iy [Ger( 1

at higher t' resonant component dominant

Errpdoar Faok 0.49 <r' <0724 GeVIcF|  Fygg ‘ 0.449 <1 < 0.724 (GeViey
E 0449 < 1< 0.724 (GeVie) = dg=-220) = ‘ | S¢=-11°
[ Mass-independent fit 3150 j ‘ ‘ 2150 { | ‘ | |

[ Mass-dependent fit | | | {

[ resonant { _3100 } ’ anih“ r H | ‘ t
[ non-resonant | i = } | ~ 50_” | ‘ |{
] Al | i IaeTA |
r 3 | ! 3 i«
UL o
F h 1y

- —100) |‘ —100F |\ |

F ~150) |. —150F | | 1
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The 1-"1"p(770)7 P wave

ap = x x xtp (COMPASS 2008)

[I7*1F p(770) 70 P]—[4 T p(770) & G]

[ p(770) & P = [47*1° £(1270) 7 F]

T [T pmmar Baodl [T l“ 0724 <1 < LOOO0 GeVIeP| gl ” |‘| IH T <7 < 1000 (GaVie?
= 10007 0724 < 1 < 1000 (Ge Ve = } |“ Sp=lea|  E=TRCI) Sg=32
2 | Massindependent fit 21 ‘ MH 2150 \ ’ m
2 s00- Mass-dependent fit k I ‘| | 100k ‘ |
< "L resonant = | 5 | ‘ |
> [ non-resonant N “ ‘ | = sk H }‘ r
Z 600+ ‘ |
ER - o H |
E o Bt ‘! Vd ! |
400 | Hied 3 || W
[ M | -100 —100F i |‘
200 } i fl -1 } 150 l
[ }
[ A H‘Iﬁl‘“l ‘l 200 —200F
wlalypl L L Liva b bivalvan I NI SN T S e e TRINEEE P FEWE R P i P e e
06 08 1 12 14 16 18 2 22 2 12 14 16 18 2 2212 06 08 1 1214 16 18 2 2224

my, [GeV/e?]

my, [GeVliel]

my, [GeVie?]

at higher t' resonant component dominant
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The 1-"1"p(770)7 P wave

Phase motion

[T*1" p(770) T P] —[0""0" f0(980) mq [IT7°1" p(770) 1 P] - [1""0" p(770) i 9
= F = 0.100 < t' < 0.113 (GeV/c)?
g 200 g 2000 :

E 0.449 < t' < 0.724 (GeV/c)
%150? '%150 * + + 0.724 < t' < 1,000 (GeV/c)?
| E | iy
%1005 s i
50
o ‘
_50- \
-100- ~100F
F 0100 <t <0.113 (GeV/c)? I : t
=150 (104 —-150+
I 0.449 <t <0.724 (GeV/c)? -
a3 AT n (Ge\‘wc)zw [N N —ZOO;I [N N B N RS PN EETN s R
06 08 1 12 14 16 18 2 22 24 06 08 1 12 14 16 18 2 22 24
m,, [Gev/c] m,, [GeV/c]

resonance with mass ~1600 MeV/c? very broad I ~600 MeV/c?
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Conclusions and Outlook

COMPASS on exotic mesons:
@ 46 million events for 7~p — p 77 7~ analyzed
@ partial-wave decomposition with 88 waves

@ two exotic signals analyzed:

» a1(1420) supernumerous
* matches a Breit-Wigner description with I' = 158 MeV/c?
* position at K* K threshold — rescattering interpretation
* and/or Deck interference

» m1(1600) spin-exotic
* at small ¢ dominant background
* slow phase motion
* much broader than previous analyses
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@ 46 million events for 7~p — p 77 7~ analyzed
@ partial-wave decomposition with 88 waves

@ two exotic signals analyzed:
» a1(1420) supernumerous

* matches a Breit-Wigner description with I' = 158 MeV/ c?
* position at K* K threshold — rescattering interpretation
* and/or Deck interference

» 1(1600) spin-exotic
* at small ¢ dominant background
* slow phase motion
* much broader than previous analyses
@ ongoing developments

» refine non-resonant (Deck) background description
» conclude on the “de-isobaring”

@ more channels to come, including 7°, n, K
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Conclusions and Outlook

COMPASS on exotic mesons:
@ 46 million events for 7~p — p 77 7~ analyzed
@ partial-wave decomposition with 88 waves
@ two exotic signals analyzed:

» a1(1420) supernumerous

* matches a Breit-Wigner description with I' = 158 MeV/ c?
* position at K* K threshold — rescattering interpretation
* and/or Deck interference

» 1(1600) spin-exotic
* at small ¢ dominant background
* slow phase motion
* much broader than previous analyses

@ ongoing developments

» refine non-resonant (Deck) background description
» conclude on the “de-isobaring”

@ more channels to come, including 7°, n, K

@ lower statistics for incoming K~ beams
— dedicated future option: dedicated RF-separated beam
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Thank you for your attention!
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