3D NUCLEON TOMOGRAPHY WORKSHOP

Modeling and Extraction Methodology

March 15-17 • Jefferson Lab Newport News, Virginia

> Organizing Commitee Amber Boehnlein (Jefferson Lab) Latifa Elouadrhiri (Jefferson Lab) David Richards (Jefferson Lab) Franck Sabatié (CEA/Saclay) Peter Schweitzer (UConn)

GPD/DVCS at **COMPASS** status and plan

DVCS with a recoil detector + an unpolarized proton target one month in 2012 6 months in 2016 5 months in 2017

Plan or idea for future with a polarized target

Nicole d'Hose – CEA Saclay for the COMPASS Collaboration

Jefferson Lab

www.jlab.org/conferences/3Dmodeling

COMPASS: Versatile facility with hadron (π[±], K[±], p ...) & lepton (polarized μ[±]) beams of high energy ~200 GeV

6(0)

MPAS

COMPASS: a Facility to study QCD

a fixed target experiment at the CERN SPS

~ 220 physicists from 25 Institutes of 13 Countries

COMMON MUON and PROTON **APPARATUS** for STRUCTURE and **SPECTROSCOPY**

Hadron Spectroscopy & **Test of ChPT** with π , K, p beams on nuclei 2008-9-12

		Polar. Deuteron	Polar. Proton	
SIDIS with µ beams with Long or Trans. Polarized Targets		(Li ⁶ D)	(NH ₃)	
Long. and Transv. Spin structure	Long.	2002-3-4-6	2007-11	
PDFS, FFS and TIVIDS	Transv.	2002-3-4	2007-10	
Drell-Yan with $m{\pi}$ beams with Transv. Pol. NH $_3$ target				
TMDs	2009-12	-14 (tests) a	nd 2105-1	
Exclusive DVCS & DVMP +SIDIS with μ beams with LH ₂ target				
GPDs + TMDs, FFs 2	2008-9-20)12 (tests) a	nd 2016-1	

	Polar. Deuteron	Polar. Proton	
	(LI°D)	(NH ₃)	
Long.	2002-3-4-6	2007-11	
Transv.	2002-3-4	2007-10	

GPD STUDIES AT COMPASS EXCLUSIVE MEASUREMENTS

Deeply Virtual Compton Scattering and Exclusive Meson Production with LH2 target and Recoil detection

- pilot runs (2008-9 and 2012) PRELIMINARY RESULTS DVCS AND π^0
- 2 years (2016-17) MEASUREMENTS ONGOING

Transverse target asymetries without recoil detection for exclusive ρ and ω production

- with polarized Li₆D (2002-3-4)......RESULTS FOR p
- with polarized NH₃ (2007-10)RESULTS FOR ρ and ω

Plan/idea for Transverse target and recoil detection

After 2020

The past and future DVCS experiments

Two stage magnetic spectrometer for large angular & momentum acceptance Particle identification with:

- Ring Imaging Cerenkov Counter
- Electromagnetic calorimeters (ECAL1 and ECAL2)
- Hadronic calorimeters
- Hadron absorbers

New equipements: >2.5m LH2 target >4m ToF Barrel CAMERA >ECALO

CAMERA

L=4m

Ø=2m

24 inner & outer scintillators separated by about 1m 1 GHz SADC readout, 330ps ToF resolution

ECALO: 2 × 2 m2

Shashlyk modules + MAPD readout one module is made of 9 cells (4×4 cm²) = 194 modules or 1746 cells

CAMERA recoil proton detector surrounding the 2.5m long LH2 target

ECALO

DVCS : $\mu p \rightarrow \mu' p \gamma$ μ μ 7 **>**γ

+ SIDIS on unpolarized protons

Muon beams with oppositive charge and polarization

max intensity in 2012: 4.6 $10^8 \mu^+$ /spill (in 9.6s each 48s) \rightarrow Lumi= 10^{32} cm⁻² s⁻¹ with 2.5m LH2 target

Recoil Proton momentum from ToF detector

Photon energy and angle from ECALs

Reconstruction of the full event kinematics (+ kinematic fit)

 $Q^2 > 1 \text{ GeV}^2$ 0.05 < y < 0.9 0.08 < t < 0.64 GeV^2

Selection of exclusive evts with recoil detection DVCS : $\mu p \rightarrow \mu' p \gamma$

Comparison between the observables given by the spectro or by CAMERA

π^0 background estimation

 $\pi^0\,$ are one of the main background sources for excl. photon events.

Two possible case:

Visible (both γ detected → subtracted)
 the DVCS photon after all exclusivity cuts is combined with all detected photons below the DVCS threshold: 4,5,10 GeV in ECAL0, 1, 2

- Invisible (one γ lost \rightarrow estimated by MC)
 - Semi-inclusive LEPTO 6.1
 - Exclusive HEPGEN π⁰
 (Goloskokov-Kroll model)

gives lower and upper limit

LEPTO and HEPGEN samples normalized to $M_{\gamma\gamma}$ peak in real data

Visible leaking π^0 in the data

Contributions of DVCS and BH at E_u=160 GeV

Contributions of DVCS and BH at E_u=160 GeV

- BH MC normalisation based on Integrated luminosity
- BH process dominant at small x_{Bi}
- π^0 background contributing at large x_{Bi}
- Clear excess of DVCS at large x_{Bi}

Contributions of DVCS and BH at E_u=160 GeV

In the bin at large x_{Bj} Subtract π^0 background Subtract BH contribution Kinematic fit for a better t determination Experimental acceptance corrections

→ Study of t-dependence of the DVCS x-section ($\gamma^* p \rightarrow \gamma p$)

- BH MC normalisation based on Integrated luminosity
- BH process dominant at small x_{Bi}
- π^0 background contributing at large x_{Bi}
- Clear excess of DVCS at large x_{Bi}

DVCS and BH at COMPASS

cross-sections on proton for $\mu^{+\downarrow}$, $\mu^{-\uparrow}$ beam with opposite charge & spin (e_{μ} & P_{μ})

$$|\sigma_{(\mu\rho\to\mu\rho\gamma)} = d\sigma^{BH} + d\sigma^{DVCS}_{unpol} + P_{\mu} d\sigma^{DVCS}_{pol} + e_{\mu} a^{BH} \mathcal{R}e A^{DVCS} + e_{\mu} P_{\mu} a^{BH} Im A^{DVCS}$$

Charge & Spin Sum:

C

$$S_{CS,U} \equiv d\sigma(\mu^{+\downarrow}) + d\sigma(\mu^{-\uparrow}) \propto d\sigma^{BH} + d\sigma^{DVCS}_{unpol} + K.s_1^{Int} \sin\phi$$

Using S_{\textit{CS},\textit{U}} and BH subtraction and integration over φ

Transverse imaging foreseen at COMPASS $d\sigma^{DVCS}/dt \sim exp(-B|t|)$

COMPASS acceptance for DVCS (2012)

Symmetric acceptance in $\phi_{\gamma\gamma}$

Size of ECAL0 limited in 2012

COMPASS acceptance for DVCS (2012)

$d\sigma^{DVCS}/dt \sim exp(-B|t|)$

Proton « radius » measured at COMPASS

Proton « radius » measured at JLab

Can we compare all the Proton « radii »?

Can we compare all the Proton « radii »?

Can we compare all the Proton « radii »?

 $d\sigma^{DVCS}/dt \sim exp(-B|t|)$

 $B(x_B) = \frac{1}{2} < r_{\perp}^2(x_B) >$

distance between the active quark and the center of momentum of spectators

Transverse size of the nucleon mainly dominated by H(x=ξ, ξ, t)

$$B'(x_B) = 1/4 < b_{\perp}^2(x_B) >$$

distance between the active quark and the center of momentum of the nucleon

Impact Parameter Representation

 $q(x, b_{\perp}) \iff H(x, \xi=0, t)$

 $< r_{\perp} > \sim < b_{\perp} > / (1-x)$

DVCS and BH at COMPAS

cross-sections on proton for $\mu^{+\downarrow}$, $\mu^{-\uparrow}$ beam with opposite charge & spin ($\mathbf{e}_{\mu} \otimes \mathbf{P}_{\mu}$) $d\sigma_{(\mu \rho \to \mu \rho \gamma)} = d\sigma^{BH} + d\sigma^{DVCS}_{unpol} + \mathbf{P}_{\mu} d\sigma^{DVCS}_{pol} + \mathbf{e}_{\mu} a^{BH} \mathcal{R} e A^{DVCS} + \mathbf{e}_{\mu} \mathbf{P}_{\mu} a^{BH} Im A^{DVCS}$

Charge & Spin Difference and Sum:

$$\mathcal{D}_{cs,\nu} \equiv d\sigma(\mu^{+\downarrow}) - d\sigma(\mu^{-\uparrow}) \propto \qquad c_0^{Int} + c_1^{Int} \cos\phi \quad \text{and} \quad c_{0,1}^{Int} \sim F_1 \mathcal{ReH}$$

$$\mathcal{S}_{cs,\nu} \equiv d\sigma(\mu^{+\downarrow}) + d\sigma(\mu^{-\uparrow}) \propto \qquad d\sigma^{BH} + c_0^{DVCS} + K \cdot s_1^{Int} \sin\phi \quad \text{and} \quad s_1^{Int} \sim F_1 Im \mathcal{H}$$

$$c_1^{Int} \propto \mathcal{R}e \left(F_1 \mathcal{H} + \xi(F_1 + F_2) \tilde{\mathcal{H}} - t/4m^2 F_2 \mathcal{E}\right)$$

NOTE: ✓ dominance of *H* with a proton target at COMPASS kinematics ✓ only leading twist and LO

DVCS and BH at COMPAS

cross-sections on proton for $\mu^{+\downarrow}$, $\mu^{-\uparrow}$ beam with opposite charge & spin ($\mathbf{e}_{\mu} \otimes \mathbf{P}_{\mu}$) $d\sigma_{(\mu p \to \mu p \gamma)} = d\sigma^{BH} + d\sigma^{DVCS}_{unpol} + \mathbf{P}_{\mu} d\sigma^{DVCS}_{pol}$ $+ \mathbf{e}_{\mu} a^{BH} \mathcal{R} e A^{DVCS} + \mathbf{e}_{\mu} \mathbf{P}_{\mu} a^{BH} Im A^{DVCS}$

Charge & Spin Difference and Sum:

$$\mathcal{D}_{cs,\nu} \equiv d\sigma(\mu^{+\downarrow}) - d\sigma(\mu^{-\uparrow}) \propto \qquad c_0^{Int} + c_1^{Int} \cos\phi \quad \text{and} \quad c_{0,1}^{Int} \sim F_1 \mathcal{Re} \mathcal{H}$$

$$\mathcal{S}_{cs,\nu} \equiv d\sigma(\mu^{+\downarrow}) + d\sigma(\mu^{-\uparrow}) \propto \qquad d\sigma^{BH} + c_0^{DVCS} + K \cdot s_1^{Int} \sin\phi \quad \text{and} \quad s_1^{Int} \sim F_1 Im \mathcal{H}$$

 $\xi \sim x_{\rm B} / (2 - x_{\rm B})$

$$Im \mathcal{H}(\xi,t) = \mathbf{H}(x = \xi,\xi,t)$$

$$\mathcal{R}e \mathcal{H}(\xi,t) = \mathcal{P}\int dx \mathbf{H}(\underline{x},\xi,t) = \mathcal{P}\int dx \mathbf{H}(\underline{x},x,t) + \mathcal{D}(t)$$

Repart of the Compton Form Factors linked to the D term Energy-Momentum Tensor : Polyakov, PLB 555 (2003) 57-62

Beam Charge and Spin Diff. @ COMPASS

Impact of DVCS @ COMPASS in global analysis ?

Im H

Is it rather well known?

Re *H* linked to the *D term* is still poorly constrained

KM15 K Kumericki and D Mueller <u>arXiv:1512.09014v1</u>GK S.V. Goloskokov, P. Kroll, EPJC53 (2008), EPJA47 (2011)

Impact of DVCS @ COMPASS in global analysis ?

25 Figure made by Pawel Sznajder using PARTON framework

KM15 K Kumericki and D Mueller NPB (2010) 841 and <u>arXiv:1512.09014v1</u> **GK** S.V. Goloskokov, P. Kroll, EPJC53 (2008), EPJA47 (2011)

VGG Vanderhaeghen, Guichon, Guidal PRL80(1998), PRD60(1999), PPNP47(2001), PRD72(2005

using 2012 data

$$e p \rightarrow e \pi^{0} p \frac{d^{2}\sigma}{dt d\phi_{\pi}} = \frac{1}{2\pi} \left[\left(\frac{d\sigma_{T}}{dt} + \epsilon \frac{d\sigma_{L}}{dt} \right) + \epsilon \cos 2\phi_{\pi} \frac{d\sigma_{TT}}{dt} + \sqrt{2\epsilon(1+\epsilon)} \cos \phi_{\pi} \frac{d\sigma_{LT}}{dt} \right]$$

 $\frac{d\sigma_L}{dt} = \frac{4\pi\alpha}{k'} \frac{1}{Q^6} \left\{ \left(1 - \xi^2\right) \left| \langle \tilde{H} \rangle \right|^2 - 2\xi^2 \operatorname{Re} \left[\langle \tilde{H} \rangle^* \langle \tilde{E} \rangle \right] - \frac{t'}{4m^2} \xi^2 \left| \langle \tilde{E} \rangle \right|^2 \right\} \text{ Leading twist should be dominant} \\ \text{but } \approx \text{ only a few \% of } \frac{d\sigma_T}{dt}$

The other contributions arise from coupling between chiral-odd (quark helicity flip) GPDs to the twist-3 pion amplitude

$$\frac{d\sigma_T}{dt} = \frac{4\pi\alpha}{2k'} \frac{\mu_\pi^2}{Q^8} \left[\left(1 - \xi^2\right) \left| \langle H_T \rangle \right|^2 - \frac{t'}{8m^2} \left| \langle \bar{E}_T \rangle \right|^2 \right]$$

$$\frac{\sigma_{LT}}{dt} = \frac{4\pi\alpha}{\sqrt{2}k'} \frac{\mu_{\pi}}{Q^7} \xi \sqrt{1-\xi^2} \frac{\sqrt{-t'}}{2m} \operatorname{Re}\left[\langle H_T \rangle^* \langle \tilde{E} \rangle\right]$$

 $\frac{\sigma_{TT}}{dt} = \frac{4\pi\alpha}{k'} \frac{\mu_{\pi}^2}{Q^8} \frac{t'}{16m^2} \left| \langle \bar{E}_T \rangle \right|^2$

A large impact of \overline{E}_T should be clearly visible in σ_{TT} and in the dip at small t of σ_T

SIDIS background estimation

- use LEPTO MC to describe non exclusive background
- use exclusive π^0 MC to describe signal contribution
- find best description of data
 - in signal region (only two photon clusters)
 - in background region (more photon clusters)

$$\frac{d^2\sigma}{dtd\phi_{\pi}} = \frac{1}{2\pi} \left[\left(\frac{d\sigma_T}{dt} + \epsilon \frac{d\sigma_L}{dt} \right) + \epsilon \cos 2\phi_{\pi} \frac{d\sigma_{TT}}{dt} + \sqrt{2\epsilon(1+\epsilon)} \cos \phi_{\pi} \frac{d\sigma_{LT}}{dt} \right]$$

Transverse target asymetries without recoil detection for exclusive ρ and ω production

using 2002-2010 data

Exclusive ρ^0 production

 \vec{k} \vec{k} ϕs y y \vec{p}_{γ} \vec{p}_{γ} ϕ

$$= \frac{1}{2} \left(\sigma_{++}^{++} + \sigma_{++}^{--} \right) + \varepsilon \overline{\sigma_{00}^{++}} \varepsilon \cos(2\phi) \operatorname{Re} \sigma_{+-}^{++} - \sqrt{\varepsilon(1+\varepsilon)} \cos \phi \operatorname{Re} \left(\sigma_{+0}^{++} + \sigma_{+0}^{--} \right) \right)$$

$$-P_{\ell}\sqrt{\varepsilon(1-\varepsilon)}\sin\phi\operatorname{Im}(\sigma_{+0}^{++}+\sigma_{+0}^{--})$$

 $\left[\frac{\alpha_{\rm em}}{8\pi^3}\frac{y^2}{1-\varepsilon}\frac{1-x_B}{x_B}\frac{1}{Q^2}\right]^{-1}\frac{{\rm d}\sigma}{{\rm d}x_{Bi}{\rm d}Q^2{\rm d}t{\rm d}\phi{\rm d}\phi_s}$

$$-S_{T}\left[\frac{\sin(\phi-\phi_{S})}{\cos(\phi-\phi_{S})}\operatorname{Im}\left(\sigma_{++}^{+-}+\varepsilon\sigma_{00}^{+-}\right)+\frac{\varepsilon}{2}\frac{\sin(\phi+\phi_{S})}{\sin(\phi+\phi_{S})}\operatorname{Im}\sigma_{+-}^{+-}+\frac{\varepsilon}{2}\frac{\sin(3\phi-\phi_{S})}{\sin(\phi-\phi_{S})}\operatorname{Im}\sigma_{+-}^{-+}\right]$$

transv. polar.

target

+
$$\sqrt{\varepsilon(1+\varepsilon)}\sin\phi_{S}\ln\sigma_{+0}^{+-}$$
+ $\sqrt{\varepsilon(1+\varepsilon)}\sin(2\phi-\phi_{S})\ln\sigma_{+0}^{-+}$

 $+S_{T}P_{\ell} \left[\sqrt{1-\varepsilon^{2}} \cos(\phi-\phi_{S}) \operatorname{Re} \sigma_{++}^{+-} \right]$ transv. polar. target + $-\sqrt{\varepsilon(1-\varepsilon)} \cos\phi_{S} \operatorname{Re} \sigma_{++}^{+-} - \sqrt{\varepsilon(1-\varepsilon)} \cos(2\phi-\phi_{S}) \operatorname{Re} \sigma_{+0}^{-+}$ long. polar. beam Dominant interfe

i jfor nucleon helicitymnfor photon helicity

Dominant interference terms: LL $\gamma^*_L \rightarrow \rho^0_L$ then LT $\gamma^*_T \rightarrow \rho^0_L$

exclusive ρ^0 production with Transv. Polar. Target

exclusive ρ^0 production with Transv. Polar. Target

exclusive ρ^0 production with Transv. Polar. Target

$$\mu p \rightarrow \mu' + \rho^{0} + p_{\text{non detected}}$$
$$\stackrel{\mu}{\rightarrowtail} \pi^{+}\pi^{-}$$

Comparison with a phenomenological GPD-based model

Goloskokov and Kroll (EPJ C74 (2014))

- Phenomenological 'handbag' approach
- Includes twist-3 \(\rho^0\) meson wave functions
- Includes contributions from $\gamma^*_{\rm L}$ and $\gamma^*_{\rm T}$

Large contribution of the GPDs E and H_T

exclusive ω production with Transv. Polar. Target

$$\mu p \rightarrow \mu' + \omega + p_{\text{non détecté}}$$
$$\mapsto \pi^+ \pi^- \pi^0$$

GK model predictions (EPJ A50 (2014)) including all the GPDs and transverse GPDs

+ the pion pole exchange which is large for ω production

- positive $\pi\omega$ form factor
- no pion pole
- negative $\pi\omega$ form factor

no unambigous determination of the sign

Future plan/idea with Transversely Polarized Target and Recoil Detection

after 2020

COMPASS + Transv. Pol. Target to constrain the GPD E

with $\mu^{+\downarrow}$, $\mu^{-\uparrow}$ beam and transversely polarized NH3 (proton) target

$$\mathcal{D}_{\mathsf{CS},\mathsf{T}} \equiv d\sigma_{\mathsf{T}} (\mu^{+\downarrow}) - d\sigma_{\mathsf{T}} (\mu^{-\uparrow})$$

$$\propto Im(\mathsf{F}_{2}\mathcal{H} - \mathsf{F}_{1}\mathcal{E}) \sin(\phi - \phi_{S}) \cos \phi$$

Questions: what is the impact of the CFF E measurement? Impact on AOM of valence quarks? Or sea quarks? Or gluons?

How to realize such and experiment?

New design of the MW cavity of the present NH3 polarized target Radial dimension of the free space outside of the MW ~180mm

allow 3 concentric cylindrical layers of Silicon detectors (in green)

No possibility for ToF \rightarrow PID of protons/pions with dE/dx momentum and coordinates (as for HERMES)

How to realize such and experiment?

First idea from Dubna, Munich, Illinois, Freiburg...

Major issues to overcome:

- number of Si strip for optimum position resolution about 1 to 2 cm (for $\Delta \phi$ =5°) × 1 cm (for Δz =3mm)

Thermal load
 very first estimate ~ 10 Watts
 Problem of cooling

Access to a the smallest minimum t

Ring A 300µm Ring B 1000µm Target radius 20mm Cavity thickness 0.6mm Cavity radius 100mm

 t_{min} =0.0917 GeV2 P_{min}= 307MeV $\epsilon_{\mu\rho\gamma}$ =38.1%

t min = 0.0656 GeV2 P_{min} = 260 MeV ε_{upy} = 56.6%

Ex CAMERA

mr	nary Reference Target rae	:: Ring A: 300μm dius: 20mm, Cavi	, Ring B: 1000µm, ty thickness: 0.6mm	, Cavity radius: 100	0 mm
-	Setup changes w.r.t reference		$-t_{min}/({ m GeV/c})^2$	Combined efficiency	
-	Reference		0.0917	38.1%	
	NH3 target radi	ius 15 mm	0.0817	34.4%	
	NH3 target radi	ius 10 mm	0.0758	21.2%	
	Cu Cavity Thick	kness 0.5 mm	0.0907	38.6%	
	Cu Cavity Thick	kness 0.4 mm	0.0895	39.3%	
	Cu Cavity Thick	kness 0.3 mm	0.0876	39.7%	
	Cu Cavity Thick	kness 0.2 mm	0.0866	40.3%	
	Cu Cavity Radiu	us 90 mm	0.0917	37.8%	
	Cu Cavity Radiu	us 80 mm	0.0917	37.3%	
	Cu Cavity Radiu	us 70 mm	0.0917	36.8%	
	Ring A Thickne	ss 200 µm	0.0913	38.3%	
	Ring A Thickne	ss 250 µm	0.0915	38.2%	
	Ring A Thickne	ss 350 µm	0.0919	38.1%	
-	CAMERA		0.0656	56.6%	EANT ৩৭৫
	T. Szameitat	Silicon RPD Simulat	ions with TGEANT	19.08.2016	12 / 23

U

How to realize such and experiment?

Comparison to Reference: 20 mm NH3, 0.6 mm Cu, 300 µm Ring A, 1000 µm Ring B

Only a major impact on the GPD E (and on OAM)

will deserve this challenging project

Quick overview on the COMPASS future and on another major activity related to TMDs

For the global quest on 3D nucleon structure

SIDIS and DY programs at COMPASS for TMD studies

with transversely polarized NH3 target (2 cells of opposite polarisation)

SIDIS: spin asymmetry proportional to TMD (quarks) \otimes FF (quark -> hadron)

DY: spin asymmetry proportional to TMD (quark) \otimes TMD (antiquark)

Expectation for the T-odd Sivers TMD :

$$\left(f_{1T}^{\perp}\right)_{\text{SIDIS}} = -\left(f_{1T}^{\perp}\right)_{\text{DY}}$$

Experimental check of this sign change is a crucial test of non-perturbative QCD

Polarized DY data taken in 2015, results expected soon

Major results for TMD studies in SIDIS

Plenty of data -> studies in (Q², x, z, p_{Th}) bins

COMPASS has measured TSA in the Q² range of the DY exp

COMPASS has joined the CERN "Physics Beyond Colliders" Working Group

Mid-range plans

Exclusive DVCS and DVMP with transversely pol. proton target Semi-inclusive DIS with transv polarized deuteron target Pion DY Hadron spectroscopy

Long range focus on separated kaon and antiproton beams up to $3.2 \times 10^7 \ \overline{p}$ /s (gain of 50) and $8 \times 10^6 \ K$ /s (gain of 80)

TMD parton distribution via DY

Strange meson excitation spectrum

Primakoff with kaon

Direct photon production

Just a look about meson spectroscopy

$\pi^{-} p \rightarrow \pi^{-} \pi^{+} \pi^{-} p$

46 million exclusive 3π events (10 - 100 more than for previous experiments) Partial-wave fit with 88 waves in narrow 3π mass slides

C. Adolph et al., COMPASS, PRL 115, 082001 (2015)

COMPASS results in the Part Data Group

2016 Review of C. Patrignani <i>et a</i>	Particle Physics. /(Particle Data Group), Chin. Phys. C, 40 , 100001 (2016).	
π ELECTRIC	POLARIZABILITY α_{π}	
See HOLSTEIN 2014	for a general review on hadron polarizability.	
VALUE (10 ⁻⁴ fm ³)	EVTS DOCUMENT ID TECN COMMENT	
$\textbf{2.0} \pm \textbf{0.6} \pm \textbf{0.7}$	63k ¹ ADOLPH 2015A SPEC $\pi^- \gamma \rightarrow \pi^- \gamma$ Compton scatt.	
¹ Value is derived a	ssuming $\alpha_{\pi} = -\beta_{\pi}$.	
References	C. Adolph at al., COMPASS, Phys.	Rev. Lett. 114, 062002 (2015)
ADOLPH 2015A	PRL 114 062002 Measurement of the Charged-Pion Polarizability	
HOLSTEIN 2014	ARNPS 64 51	

$a_1(1420)$	$I^{G}(J^{PC}) = 1^{-}(1^{++})$		
a1 (1420) MASS	1414 ⁺¹⁵ ₋₁₃ MeV		
$a_1(1420)$ WIDTH	153 <u>+</u> 8 _23 MeV		
Decay Modes	C. Adolph at al., COMPASS, Phys. Rev.	Lett. 115, 0820	01 (2015)
Mode	Fraction (Γ_i / Γ)	Scale Factor/ Confidence Level	P (MeV/c)
$\Gamma_1 = f_0 (980) \pi$	seen		341

To do list after:

Christain Weiss:

J/psi and t-slope

Marc Vanderhaeghen:

8 points from Jlab Meaning of F1 and improved theoretical t-slope Gluons/sea quarks...

Rad Corrections

Latifa and meeting in May

Kresimir GPD E

PiO RC in cosphi impact on Sigma_LT

D term to be extracted with ReH and Integrated ImH!

Other GPDs (ex. in excl. ρ^0 production)

Chiral-even
$$H \leftarrow g$$

 $\gamma^*_{L} p^{\uparrow} \rightarrow \rho^0_{L} p^{\uparrow} L=0$
 $\gamma^*_{L} p^{\uparrow} \rightarrow \rho^0_{L} p^{\downarrow} L=1$
 $j_{1:} 2J^q = \int x (H^q(x,\xi_0) + E^q(x,\xi_0)) dx$
Chiral-odd
 $H_T \leftarrow h_1 \bigcirc - \bigcirc$ Transversity: quark spin
 $\gamma^*_{T} p^{\uparrow} \rightarrow \rho^0_{L} p^{\downarrow} L=0$
 $\overline{E_T} = 2\widetilde{H_T} + E_T \leftarrow h_1 \bigcirc - \bigcirc$ Boer-Mulders: quark k_T
 $\gamma^*_{T} p^{\uparrow} \rightarrow \rho^0_{L} p^{\uparrow} L=1$

Transverse imaging at COMPASS $d\sigma^{excl. \rho}/dt$ ~ exp(-B|t])

model developed by Sandacz renormalised according Goloskokov and Kroll prediction

Transverse imaging at COMPASS $d\sigma^{excl. \rho}/dt \sim exp(-B|t|)$

Predictions for mesons from GK model

GK model for GPDs (determined for mesons) including dominant (longitudinal) $\gamma_{L}^{*} \mathbf{p} \rightarrow \rho_{L} \mathbf{p}$ and transv. polar. $\gamma_{T}^{*} \mathbf{p} \rightarrow \rho_{T} \mathbf{p}$ quark and gluon contributions and beyong leading twist

16