#### Transverse spin effects in Drell-Yan processes

M. Chiosso

#### Transversity 2017 Frascati, 11-15 December

寭



INFN Istitute Nazienale di Fisica Nacleare

#### Which tool?





$$x_F \approx 2p_L/\sqrt{s} = x_1 - x_2$$
  
 $M^2_{\mu^+\mu^-} = sx_1x_2$ 

#### Predictions stated in the original paper

S. D. Drell and T. M. Yan, Phys.Rev. Lett.25, 316 (1970)

The cross section depends only on the scaling variable  $\tau = Q^2/s$ 

The magnitude and shape of the cross section are determined by the parton and antiparton distributions measured in deep inelastic lepton scatterings

If a pion, kaon, or antiproton is used as the projectile, its structure functions can be measured by lepton pair production. This is the only way I know of to study the parton structure of a particle unavailable as a target The process of lepton pair production is so well understood in perturbative QCD that it has now become an important and powerful tool in search of new physics information"

T-M. Yan, Talk given at the Drell Fest, July 31, 1998, SLAC on the occasion of Prof. Sid Drell's retirement

arXiv:hep-ph/9810268v1 6 Oct 1998



#### What we want to probe?

#### Leading twist TMD PDFs

|                      |   | Quark Polarization     |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|----------------------|---|------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                      |   | Unpolarized<br>(U)     | Longitudinally Polarized<br>(L)                                                                 | Transversely Polarized<br>(T)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| -                    | υ | $f_1(x,k_T^2)$ •       |                                                                                                 | $h_1^{\perp}(x,k_T^2)$<br>Boer-Mulders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| larizatior           | L |                        | $g_1(x,k_T^2) \xrightarrow[Helicity]{}          \xrightarrow$                                   | $h_{1L}^{\perp}(x,k_T^2) \xrightarrow{P}_{Long-Transversity}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Nucleon Polarization | т | $f_1^{\perp}(x,k_T^2)$ | $g_{1T}(x,k_T^2) \stackrel{\uparrow}{\bullet} - \stackrel{\uparrow}{\bullet}$<br>Trans-Helicity | $h_{1}(x,k_{T}^{2}) \qquad \stackrel{\uparrow}{\bigoplus} - \stackrel{\downarrow}{\bigoplus} - \downarrow$ |  |

#### Leading twist TMD PDFs



## Which tools to probe TMDs?





"what can the Drell-Yan experiments offer in probing and understanding the TMDs?"

Convolution of two PDFs



Access to mesons and antiproton TMDs (with mesons and antiproton beam)

Access to sea quarks TMDs of the nucleon

Crucial test of TMD formalism:

experimental confirmation of the sign change prediction of the Sivers and the Boer-Mulders functions between SIDIS and Drell-Yan reactions

## **DY for TMDs**

Future or planned Drell-Yan experiments: large variety of beam and target and kynematical ranges

| Experiment                                                                             | particles                                                                                  | beam en-<br>ergy (GeV) | $\sqrt{s}$ (GeV) | $x^{\uparrow}$   | $\mathcal{L}$ (cm <sup>-2</sup> s <sup>-1</sup> ) | $\mathcal{P}_{\mathrm{eff}}$ | $\mathcal{F}$ (cm <sup>-2</sup> s <sup>-1</sup> ) |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------|------------------|------------------|---------------------------------------------------|------------------------------|---------------------------------------------------|
| AFTER@LHCb                                                                             | $p + p^{\uparrow}$                                                                         | 7000                   | 115              | $0.05 \div 0.95$ | $1 \cdot 10^{33}$                                 | 80%                          | $6.4 \cdot 10^{32}$                               |
| AFTER@LHCb                                                                             | <i>p</i> + <sup>3</sup> He <sup>↑</sup>                                                    | 7000                   | 115              | $0.05 \div 0.95$ | $2.5\cdot 10^{32}$                                | 23%                          | $1.4\cdot10^{31}$                                 |
| AFTER@ALICE $_{\mu}$                                                                   | $p + p^{\uparrow}$                                                                         | 7000                   | 115              | $0.1 \div 0.3$   | $2.5\cdot 10^{31}$                                | 80%                          | $1.6\cdot10^{31}$                                 |
| $\begin{array}{c} \text{COMPASS} \\ \text{(CERN)}  \bar{p} + p^{\uparrow} \end{array}$ | $\begin{array}{l} \pi^{\pm} + p^{\uparrow} \\ \mathbf{k}^{\pm} + p^{\uparrow} \end{array}$ | 190                    | 19               | 0.2 ÷ 0.3        | 2 · 10 <sup>33</sup>                              | 18%                          | 6.5 · 10 <sup>31</sup>                            |
| PHENIX/STAR<br>(RHIC)                                                                  | $p^{\uparrow} + p^{\uparrow}$                                                              | collider               | 510              | 0.05 ÷ 0.1       | $2 \cdot 10^{32}$                                 | 50%                          | $5.0 \cdot 10^{31}$                               |
| E1039 (FNAL)                                                                           | $p + p^{\uparrow}$                                                                         | 120                    | 15               | $0.1 \div 0.45$  | $4 \cdot 10^{35}$                                 | 15%                          | $9.0\cdot10^{33}$                                 |
| E1027 (FNAL)                                                                           | $p^{\uparrow} + p$                                                                         | 120                    | 15               | 0.35 ÷ 0.9       | $2\cdot 10^{35}$                                  | 60%                          | $7.2\cdot 10^{34}$                                |
| NICA (JINR)                                                                            | $p^{\uparrow} + p$                                                                         | collider               | 26               | $0.1 \div 0.8$   | $1\cdot 10^{32}$                                  | 70%                          | $4.9\cdot10^{31}$                                 |
| fsPHENIX<br>(RHIC)                                                                     | $p^{\uparrow} + p^{\uparrow}$                                                              | collider               | 200              | 0.1 ÷ 0.5        | $8\cdot 10^{31}$                                  | 60%                          | $2.9\cdot 10^{31}$                                |
| fsPHENIX<br>(RHIC)                                                                     | $p^{\uparrow} + p^{\uparrow}$                                                              | collider               | 510              | $0.05 \div 0.6$  | $6\cdot 10^{32}$                                  | 50%                          | 1.5 · 10 <sup>32</sup>                            |
| PANDA (GSI)                                                                            | $\bar{p} + p^{\uparrow}$                                                                   | 15                     | 5.5              | $0.2 \div 0.4$   | $2 \cdot 10^{32}$                                 | 20%                          | $8.0 \cdot 10^{20}$                               |

#### **Single Spin Asymmetries**



#### Probing the TMD formalism



Still needs experimental confirmation

COMPASS at CERN, P-1027 and P-1039 at FERMILAB, PANDA at FAIR, NICA

#### **Probing the TMD formalism**



# $\pi^- p^{\uparrow} \rightarrow \mu^+ \mu^- X$ 2015 DY RUN - first polarized DY data

In the same kinematical region as that for SIDIS extraction



Test of TMD formalism

#### **Probing the TMD formalism**



$$\pi^- p^\uparrow \rightarrow \mu^+ \mu^- X$$
 2015 DY RUN - first polarized DY data

In the same kinematical region as that for SIDIS extraction



Present

#### the Sivers function sign change



#### the Sivers function



# 🛟 Fermilab

|                                                                              | Beam<br>Pol. | Target<br>Pol. | Favored<br>Quarks | Physics Goal                                                                    |
|------------------------------------------------------------------------------|--------------|----------------|-------------------|---------------------------------------------------------------------------------|
| $\begin{array}{c} COMPASS \\ \pi^- p^\uparrow \to \mu^+ \mu^- X \end{array}$ | ×            | ~              | Valence<br>quark  | Sign change and size of<br>Sivers distribution for<br>valence quark             |
| P-1027<br>$p^{\uparrow}p \rightarrow \mu^{+}\mu^{-}X$                        | ~            | ×              | Valence<br>quark  | Sign change and size of<br>Sivers distribution for<br>valence quark             |
| P-1039<br>$pp^{\uparrow} \rightarrow \mu^+ \mu^- X$                          | ×            | ~              | Sea quark         | Size and sign of Sivers<br>distribution for Sea<br>quarks, if DY $A_N \neq 0$ . |

From A. Klein and X. Jiang

Test of

TMD

formalism

## Probing the Sivers function sign change

# **‡Fermilab** P1039

Probing the Sivers function for sea quarks:

What is the sign for Sivers Asymmetry for sea quark?

Which is the contribution of the sea quark OAM to the proton spin?





#### Sea-quark OAM contribution to proton spin?

## **‡ Fermilab** E-866 E906 P1039

Probing the Sivers function for sea quarks:

If the excess of anti-d quarks is due to a pion cloud around the proton, then the pions (and sea quarks) contribute a significant amount of orbital angular momentum in the x range where significance valence sea quark were measured

Non-zero dbar sea-quark Sivers function is also obtained in order to explain the large Sivers moment observe for K<sup>+</sup> in SIDIS

Sea-quark Sivers investigated in future **SIDIS** experiment at JLAB and EIC



x: 0.1 - 0.5

proton beam on polarized:NH3 target ubar SiversND3 target: dbar Sivers

With E1027 polarized beam: access to double spin asymmetry

Sea landscape

# AFTER @ LHC

AFTER@LHC is a complementary facility to further investigate the quark Sivers effect by measuring DY STSAs

Capable of measuring the Drell-Yan  ${\rm A}_{\rm N}$  in a broad kinematic range with exceptional precision

Accessing the quark Sivers function in a polarised neutron: p+3He collisions



Test of

TMD

formalism

#### LHCb-like detector

Future

1. double polarized Drell-Yan



At LO the double transverse asymmetry is completely determined by the transversity of quarks and antiquarks



1. Double spin asymmetries at NICA?

Operation with proton and deuteron beam, all possible polarization combination

First time comprehensive studies of all leading-twist PDFs in single experiment







measurement of transversity entirely free of the uncertainty of fragmentation functions

 $\bar{p}$  radiofrequency separated beam at M2 CERN beamline

#### **RF Separated Beam (CERN M2 Beam Line)**



Deflection with 2 cavities Relative phase = 0 --> dump Deflection of wanted particle given by:

 $\Delta \Phi = 2\pi (L f / c) (\beta_1^{-1} - \beta_2^{-1}) \text{ with } \beta_1^{-1} - \beta_2^{-1} = (m_1^2 - m_2^2)/2p^2$ 

To keep good separation, L should increase as p<sup>2</sup> --> limits the beam momentum

| Particle<br>type | Fraction<br>at T6 | Fraction at<br>COMPASS |      |
|------------------|-------------------|------------------------|------|
| pbar             | 1.6%              | 11.3 %                 | 20 ( |
| K-               | 3.0 %             | o %                    | Jev/ |
| π-               | 32.4%             | 84.3%                  |      |
| e                | 63.0%             | 4.4%                   |      |

"Normal" h<sup>-</sup> beam composition: 97% (π<sup>-</sup>) 2.5%(K) 0.5% (pbar) CERN

Sea quark transversity not included in the recent extraction of transversity: could it introduce systematic uncertainties in the determination of the tensor charges  $\delta u$  and  $\delta d$ ? huge difference between the accuracy of the extractions from the existing data and from the QCD lattice simulations

 $h_{1d}$  extraction affected by large uncertainties



## **Flavor Separation**



# **Fermilab** AFTER @ LHC

extract proton transversity using NH3 and 6LiD runs Provides important cross check for Collins based extraction of proton transversity (magnitude of flavor contributions)

Combine with NH3 measurement to determine flavor dependent Sivers



Future SIDIS: JLab12 with proton and neutron targets COMPASS with deuteron target EIC



## Unpolarized Drell-Yan

#### Experimental tool: unpolarized Drell-Yan



$$\frac{d\sigma}{d\Omega} = \frac{\alpha_{em}^2}{Fq^2} \hat{\sigma}_U \left\{ (1 + A_U^1 \cos^2\theta + \sin(2\theta) \ A_U^{\cos\phi} \cos\phi + \sin^2\theta \ A_U^{\cos2\phi} \cos(2\phi) \ ) \right. \\ \left. \lambda = A_U^1; \ \mu = A_U^{\cos\phi}; \ \nu = 2A_U^{\cos 2\phi} \\ \left. A_U^{\cos2\phi_{CS}} \propto h_{l,\pi}^{\perp q} \otimes h_{l,p}^{\perp q} \longrightarrow \begin{array}{c} \text{pion} \quad \text{proton} \\ (\mathsf{BM})_\pi \otimes (\mathsf{BM})_p \end{array} \right. \right\}$$

Lam-Tung relation  $1 - \lambda = 2\nu$ 

#### Lam-Tung Relation & Boer-Mulders function

#### Lam-Tung relation

experimental confirmation of a universal behavior of the valence quark Boer-Mulders functions for pions and nucleons

pion and kaon pdfs

flavor and x dependencies of the Boer-Mulders functions

Boer-Mulder sign change?



#### Future

#### Lam-Tung Relation & Boer-Mulders function

$$1 - \lambda = 2\nu$$

- Proton-induced Drell-Yan (E866)
  - consistent with LT-relation
  - no cos(2Φ) dependence
  - no pr dependence
- Pion-induced Drell-Yan (NA10, E615)
  - violates LT-relation
  - (independent of nucleus no nuclear effect)
  - large  $\cos(2\Phi)$  dependence
  - strong with p<sub>T</sub>
  - One candidate to explain LT violation: BM function
- Pionic DY probes BM (valence), target=proton Protonic DY probes BM (sea), target=proton BM (sea) ≪ BM (valence)
  - study of spin-orbit correlations



#### **Boer-Mulders function**

 $\propto h_{1,h}^{\perp q} \otimes h_{1,p}^{\perp q}$ 

Obtain BM with kaon beam

 $A_{UU}^{\cos(2\phi)}$ 



 $K^{+}p(x_{f}) = u^{K}(x_{1})\overline{u}^{p}(x_{2}) + \overline{s}^{K}(x_{1})s^{p}(x_{2})$  $K^{-}p(x_{f}) = \overline{u}^{K}(x_{1})u^{p}(x_{2}) + s^{K}(x_{1})\overline{s}^{p}(x_{2})$ 

| Experiment | Beam type (GeV)      | Intensity (/s)       | Target | DY events |
|------------|----------------------|----------------------|--------|-----------|
|            | K- (150)             | $0.25 \times 10^{7}$ |        | 688       |
| NA3        | K- (200)             | $0.93 \times 10^{7}$ | Pt     | 90        |
|            | K <sup>+</sup> (200) | $0.22 \times 10^{7}$ |        | 170       |
|            | K- (80)              | $1.9 	imes 10^7$     |        | 593       |
| COMPASS++  | K- (100)             | $2.3 \times 10^{7}$  | С      | 1,800     |
|            | K <sup>-</sup> (120) | $2.5 \times 10^7$    |        | 3,600     |
|            | K+ (80)              | $1.7 	imes 10^7$     |        | 482       |
| COMPASS++  | K+ (100)             | $2.1 \times 10^{7}$  | С      | 1,700     |
|            | K <sup>+</sup> (120) | $2.3 \times 10^{7}$  |        | 3,700     |

**Possibility of Radio-Frequency separated beam pion, kaon and antiproton** increase by a factor of two the maximum kaon/antiproton flux actually achievable kaon and anti-protons flux possibly reaching 10<sup>7</sup>p/s

#### **Boer-Mulders function**

Indipendent extraction of proton BM

BM with antiproton beam  $A_{UU}^{\cos(2\phi)} \propto h_{1,h}^{\perp q} \otimes h_{1,p}^{\perp q}$ prediction of a universal behavior of the valence quark Boer-Mulders functions for pions and nucleons also awaits experimental confirmation

Combining analysis of DY data with pion and antiproton beam opport an indipendent extraction of pion BM is achievable verify

opportunity to verify the BM sign-change



Accessing e+e– DY pairs on top of  $\mu+\mu$ – would reinforce the feasibility of polarised measurements

#### Future

Active absorber



The Drell-Yan process is a very powerful tool to probe the TMDs

it can definitely help addressing several open challenges:

extracting the TMDs in a model indipendent way

check the validity of the TMD factorization formalism

probe the transverse structure of the mesons

easily access the sea-quark PDFs

Growing global interest worlwide, with several ongoing and upcoming experiments at existing or future hadron facilities: J-PARC RHIC GSI – FAIR GSI – FAIR CERN (COMPASS and LHC-spin) NICA FERMILAB

Transversity 2017 Frascati, 11-15 December

\*

\*

THANK YOU

u

#### DY with antiproton beam

#### http://cds.cern.ch/record/2057587/files/SPSC-P-353.1.pdf



Figure 1: Baby MIND integrated into the WAGASCI experiment.



Figure 2: A side view of Baby MIND with scintillator planes (grey) and magnetised iron (blue/red).

- Basically combined tracking+SM1+calorimeter
- $\bullet$  Instead of scintillators  $\rightarrow$  High granularity detectors
- Can be placed between target and SM1
- Additional absorber in SM1 with beam dump?
- Could in principle allow also for  $e^+e^-$  detection?

 From SIDIS data, one deduces that the proton B-M functions are negative for both u and d quarks:

$$h_{1,u}^{\perp,DIS}(p) \le 0$$
;  $h_{1,d}^{\perp,DIS}(p) \le 0$ 

2) From NA10 pion Drell-Yan data, one deduces that the product of the pion valence quark B-M function and the proton valence quark B-M function is positive. Using *u*-quark dominance, we have:  $h_{1,u}^{\perp,DY}(p) * h_{1,u}^{\perp,DY}(\pi) > 0$ 

Therefore, either a)  $h_{1,u}^{\perp,DY}(p) > 0$ ;  $h_{1,u}^{\perp,DY}(\pi) > 0$  (sign - change)

or b)  $h_{1,u}^{\perp,DY}(p) \le 0$ ;  $h_{1,u}^{\perp,DY}(\pi) \le 0$  (no sign – change)

3) The crucial measurement is to determine the sign of the pion B-M function in polarized  $\pi - p$  D-Y, since the  $\sin(\phi + \phi_s)$  modulation is sensitive to the sign of  $h_{1,u}^{\perp,DY}(\pi)$ .

Future

#### Lam-Tung relation

Lam-Tung Relation is theoretically robust



- Nuclear effects
- -Higher-Twist effects from quark-antiquark binding in pion
- -Factorization breaking QCD Vacuum
- $-k_{\rm T}$  dependent transverse momentum distribution (Boer Mulders  $h_1^{\perp})$

#### Future

1. Double spin asymmetries at J-PARC?

Drell-Yan measurements using polarized proton beam on polarized target at the 50-GeV PS will provide determination of the spin-dependent antiquark distribution at an x region not accessible in the RHIC-spin program.







Accessing the quark Sivers function in a polarised neutron:  $p+3He^{1}$  collisions

Access to polarised neutrons and thus to the Sivers functions in a neutron which can shed some light on its isospin dependence



#### Lam-Tung Relation & Boer-Mulders function

origin of the Lam-Tung relation violation Measurements with different beams over wide kinematical ranges would help differentiating the origin of Lam-Tung violation

## Theoretical Interpretations of Lam-Tung Violation in pion-induced DY

|                            | Boer-Mulders<br>Function      | QCD chromo-<br>magnetic effect | Glauber gluon       |
|----------------------------|-------------------------------|--------------------------------|---------------------|
| Origin of effect           | Hadron                        | QCD vacuum                     | Pion specific       |
| Quark-flavor dependence    | Yes                           | No                             | No                  |
| Hadron dependence          | Yes                           | No                             | Yes                 |
| Large P <sub>T</sub> limit | 0                             | Nonzero                        | 0                   |
| Violation for $\pi p$      | Yes (valence quarks involved) | Yes                            | Yes                 |
| Violation for Kp           | Yes (valence quarks involved) | Yes                            | Yes/No              |
| Violation for $ar{p}p$     | Yes (valence quarks involved) | Yes                            | No                  |
| Violation for <i>pp</i>    | No (sea quarks involved)      | Yes                            | No                  |
| References                 | PRD 60, 014012 (1999)         | Z. Phy. C 60,697 (1993)        | PLB 726, 262 (2013) |

#### the Sivers function sign change



#### arXiv:hep-ph/9810268v1 6 Oct 1998

1. It played a crucial role in the design of the experiments at CERN which discovered the W and Z bosons

2. For the first time we have gotten a glimpse for how the quarks and antiquarks are distributed inside the unstable particles pion and kaon

3. By combining proton and antiproton data, it is possible to separate the valence and sea distributions inside a proton and an antiproton

4. Lepton pair production data have become an integral component of the global fits together with the deep inelastic lepton scatterings in determining the parton distributions inside a nucleon

5. Lepton pair production with a polarized target/beam has been suggested as a tool to pin down the spin-dependent parton distributions in a nucleon, especially for the sea quarks

## **‡Fermilab** Proton induced DY scattering

Detector acceptance chooses range in  $x_{target}$  and  $x_{beam}$  $x_F = x_{beam} - x_{target} > 0$ 

high-x: valence beam quarks Low/interm.-x: sea target quarks

**Future** 





Test of TMD formalism

1. Double spin asymmetries at NICA?

Operation with proton and deuteron beam, all possible polarization combination

First time comprehensive studies of all leading-twist PDFs in single experiment

estimations of Boer-Mulders asymmetry statisitical error with 100k events two versions of the evolution model for the transversity are considered  $\sqrt{s} = 26 \text{ GeV with } Q^2 = 15$ 





| Experiment                 | NICA,<br>SPD     |
|----------------------------|------------------|
| mode                       | collider         |
| Beam/target                | pp, pd,dd        |
| Polarization:b/t           | 0.5              |
| Luminosity                 | 10 <sup>32</sup> |
| √s , GeV                   | 10-26            |
| x <sub>1(beam)</sub> range | 0.1-0.8          |
| q <sub>T</sub> , GeV       | 0.5 -6.0         |
| Lepton pairs,              | μ-μ+, e+e-       |
|                            |                  |



already played a key role in the study of transverse spin and TMDs

• Ralston & Soper (1979) introduced the transversity distribution  $h_1$  in the context of transversely polarized DY. The same process was studied in the 90s by Artru & Mekhfi, Jaffe & Ji, Cortes, Pire & Ralston

• The first phenomenological indication of the possible existence of a T-odd TMD, the Boer-Mulders function came from Boer's (1999) study of the cos  $2\phi$  asymmetry in DY