Direct Photon Production with Meson Beams

A. Guskov, JINR, Dubna Trento, Italy 6.11.2017

Outline

- Gluon structure of hadrons
- Photons in hadron collisions
- Prompt photons
- Previous prompt photon experiments with pion beams
- Possible future measurements with kaon beam
- Summary

Gluon component: πvs. p

Gluon contribution at high x in pion is much larger than in proton

g(x) for pion

prompt photons

quarconia production

jet production

Z. Phys. C 72, 249-254 (1996)

xG(x)	Reactions	Subprocess	Reference
$(1-x)^3$	$\pi N \to \psi$	$GG ightarrow car{c}$	[4], (1980)
$(1-x)^{1.9\pm0.3}$	$\pi^- Be o \psi$	GG o car c	[5],(1983), WA11
$(1-x)^{2.38\pm0.06\pm0.1}$	$\pi^{\pm} Pt o \psi$	$GG ightarrow car{c}$	[6], (1983)
$\sim (1-x)^{3.1}$, evolves with Q^2	$\pi p o \psi, \pi^{\pm} X$	GG o car c	[7], (1984)
$(1-x)^{2.3^{+0.4+0.1}_{-0.3-0.5}}$	$\pi^-W o \Upsilon$	$GG o bar{b}$	[8], (1986) NA10
$(1-x)^{1.94^{+0.39}_{-0.17}}$	$\pi^{\pm}p ightarrow \gamma X$	$QG o \gamma Q$	[10], (1989) WA70
$(1-x)^{2.1\pm0.4}$	$\pi^+ p \to \gamma X$	$QG ightarrow \gamma Q$	[11], (1991)
$(1-x)^{2.75\pm0.40\pm0.75}$	$\pi^- p o dijets$	$QG, GG \rightarrow dijets$	This paper

$$xg(x) \sim (1-x)^{\eta}, \eta \approx 2$$

Gluon PDFs at 10 GeV²

G(x) for kaon

No direct experimental data!

Not too many theoretical works

Gluon content of kaon is ~1.5 larger in respect to pion)! (based on yield of D-mesons in NA32)

Sov.J.Nucl.Phys. 49 (1989) 346 Yad.Fiz. 49 (1989) 554-558 IFVE-88-67

Gluon content of kaon is ~1/6 in respect to pion)!

Phys. Rev. D93 (7) (2016) 074021

Production of photons in hadron collisions

collective effects, not important for hA collisions

Prompt photons

$$d\sigma_{AB} = \sum_{a,b=q,\bar{q},g} \int dx_a dx_b f_a^A(x_a,\mu^2) f_b^B(x_b,\mu^2) d\sigma_{ab\to\gamma X}(x_a,x_b,\mu^2).$$

access to gluon distributions in hadrons

$$\sigma \sim (\mathbf{g_B} \cdot \mathbf{q}(\mathbf{\bar{q}})_{\mathbf{T}} + \mathbf{g_T} \cdot \mathbf{q}(\mathbf{\bar{q}})_{\mathbf{B}} + \mathbf{q}(\mathbf{\bar{q}})_{\mathbf{B}} \cdot \mathbf{\bar{q}}(\mathbf{q})_{\mathbf{T}} + \mathbf{NLO}) \times \mathbf{K}\text{-factor}$$

signal

Gluon Compton Scattering (GCS)

Decay photons

 $\pi^+ p \rightarrow \gamma X E_{\pi} = 100 \text{ GeV}$

Decay photons dominate over prompt photons in the full range of transverse momentum p_T. Even at high p_T signal-to-background ratio in much below 1

Fragmentation photons

Relative contribution of fragmentation photons is below 15% even at much higher energies.

It can be calculated in LO and NLO

Previous studies at our energies

Experiment	Beam and target	\sqrt{s} , GeV	y range	x_T range
E95 (1979)	p; Be	19.4, 23.75	-0.7 - 0.7	0.15 - 0.45
E629 (1983)	$p, \pi^+; C$	19.4	-0.75 - 0.2	0.22 - 0.52
NA3 (1986)	p, π^{+} , π^{-} ; C	19.4	-0.4 - 1.2	0.26 - 0.62
NA24 (1987)	$p, \pi^+, \pi^-; p$	23.75	-0.65 - 0.52	0.23 - 0.59
WA70 (1988)	$p, \pi^+, \pi^-; p$	22.96	-0.9 - 1.1	0.35 - 0.61
E706 (1993)	$p, \pi^-; Be$	30.63	-0.7 - 0.7	0.20 - 0.65
E704 (1995)	p; p	19.4	< 0.74	0.26 - 0.39
UA6 (1993,1998)	$ar{p}; p$	24.3	-0.2 - 1.0	0.34 - 0.50

 $x_T=2p_T/\sqrt{s}$

Fixed target measurements

A lot of measurements with proton beams at much higher energies (Tevatron, LHC)

NA24 — typical fixed-target experiment for prompt photon studies

Signal vs background

Much higher rate of background photons mainly from π⁰ and η mesons decay!

$$N\gamma_{prompt} = N\gamma_{detected} - \frac{N\gamma_{bkg. found}}{\epsilon}$$

At high E (and pT) we should expect background from merging of 2γ into a single cluster!

WA70-E706 puzzle

π/p ratio for **y**

production of **m**⁰

Previous results: pp(pbar)

pp(pbar)

WA70-E706 puzzle

Two approaches were proposed to fix disagreement between data ant predictions:

k_T- smearing:
$$\phi(x,Q^2) \to f(k_T) \, \phi(x,Q^2)$$

$$f(k_T) = \frac{e^{-k_T^2/\left\langle k_T^2 \right\rangle}}{\pi \langle k_T^2 \rangle}$$

<k_T> = 1.5 GeV for E706 and up to 3-4 GeV for ~ √s~1 TeV
This approach modifies only low-p_T part

ISR of soft gluons:

also an impact to transverse momenta of partons

2y data

(c)	6000000	~~~	(d) Company	un sees unn
	$q\bar{q} \rightarrow \gamma_{\rm ISR}$	yg .	$gq \rightarrow \gamma$	$gq \rightarrow \gamma \gamma_{FSR} q$
	CERN WA70 Bonvin <i>et al</i> 1989		$\pi^- p o \gamma \gamma X$	$\sqrt{s} = 22.96 \text{ GeV}$ Z. Phys. C41 591
-	у	<i>p</i> _{T1} (GeV/c)	p_{T2} (GeV/c)	σ (pb)
	-1.0-1.25	>3.0	>2.75	54 ± 9
-	у	p _T (GeV/c)	Z _{min}	$d\sigma/dp_T$ (pb/GeV)
-	-1.0-1.25	3.0–3.5 3.5–4.0	2.75/3.0 2.75/3.5	70.0 ± 17.2 25.0 ± 8.6
		4.0–4.5	2.75/3.5	25.0 ± 6.0 17.0 ± 5.2
		4.5–5.0	2.75/4.5	17.0 ± 3.2 10.0 ± 3.4
		5.0–6.0	2.75/5.0	4.7 ± 1.4
		6.0–7.0	2.75/5.5	1.0 ± 0.6
-	у	p_T (GeV/c)	z_{\min}	σ (ph)
		(Ge V/C)		(pb)

2.75/3.0

 69 ± 11.5

Œ				的数据 相 对 是 据题图 数图 表示 [1]
	CERN NA24 De Marzo <i>et</i>		$\pi^- p \to \gamma \gamma X$	$\sqrt{s} = 23.7 \text{ GeV}$ <i>Phys. Rev.</i> D42 748
	p _{T1} (GeV/c)	p _{T1} ^{mid} (GeV/c)	z ^{min}	$Ed^{3}\sigma/dp^{3}$ (pb/GeV ²)
r	2.5–3.0	2.75	0.80	$2.07 \begin{array}{c} +0.53 \\ -0.92 \end{array}$
	3.0-4.0	3.50	0.67	$0.70 \begin{array}{c} +0.23 \\ -0.36 \end{array}$
	4.0-5.0	4.50	0.50	$0.093^{\ +0.133}_{\ -0.093}$
	CERN NA3		$ \begin{array}{c} p C \to \gamma \gamma X \\ \pi^+ C \to \gamma \gamma X \end{array} $	
	Badier et al 19	985	$\pi^{-} C \to \gamma \gamma X$ $\pi^{-} C \to \gamma \gamma X$	

Badier et al 1985		7,7 ==	Phys. Lett. 164B 184
	у	p_T	σ (nh)
		(GeV/c)	(pb)
$p C \to \gamma \gamma X$	-0.4-1.0	> 1.8	1480 ± 380
		1.8-2.0	740 ± 250
		2.0-2.5	570 ± 230
		>2.5	170 ± 130
$\pi^+ \mathrel{\mathrm{C}} \to \gamma \gamma \mathrel{\mathrm{X}}$	-0.4-1.0	> 1.8	350 ± 640
$\pi^- C \to \gamma \gamma X$	-0.4-1.0	> 1.8	1220 ± 350
		1.8-2.0	610 ± 250
		2.0-2.5	430 ± 240
		>2.5	180 ± 140

>3.0

-1.0 - 1.25

gk(x) with RF-separated kaon beam...

See Johannes's talk

K- would be nice for study of systematics

It would be nice to have K+ beam with momentum as large as possible (>100 GeV/c) and intensity of about ~5e6 s-1 for 1 year

... at COMPASS?

- System of 3 precise electromagnetic calorimeters of high aperture for prompt photons detection in wide kinematic range. They can be used also in trigger.
- Threshold Cherenkov detectors on the beam line to identify incoming hadron.
- Nice tracking to separate neutral and charged clusters.
- Pions as a reference.

1 year of data taking with kaon beam — ~10⁶ events with p_T>2.5 GeV/c, comparable with E706 (g_K(x)=g_π(x))

Prompt photos vs quarkonia production

See Jen-Chieh's talk for more details

Different mechanisms of J/ψ production:

gg→J/ψg ¬qqbar→J/ψ ...→χ_{c012}→J/ψγ diffractive production of J/ψ ...?

Transparent theory

Nice signal

Experimental difficulties with strong background subtraction

Difficulties to treat the signal

Complimentary approaches!

Prompt photons and DY

Phys.Lett. B209 (1988) 397-406 (1988)

Comparison of Drell-Yan and single photon cross sections

Production of low-mass dimuon pairs is a process very similar to prompt photon production

- two orders of magnitude smaller cross section
 - possibility to achieve low-p_T region

y-u+u-in matter

$$\sigma_{\rm tot}(E_{\gamma}) = \int_{x_{\rm min}}^{x_{\rm max}} \frac{d\sigma}{dx_{+}} \, dx_{+} = 4 \, \alpha \, Z^{2} \, r_{c}^{2} \, \int_{x_{\rm min}}^{x_{\rm max}} \left(1 - \frac{4}{3} \, x_{+} x_{-}\right) \log(W) \, dx_{+} \, .$$

$$x_{+} = \frac{E_{\mu}^{+}}{E_{-}} \, .$$

					σ _{N,E=10-100} GeV≃5 μb
E_{γ}	$\sigma_{\sf tot}, {\sf H}$	$\sigma_{\sf tot}$, Be	$\sigma_{\sf tot}$, Cu	$\sigma_{\sf tot}$, Pb	

 μ barn

30.22

334.6

886.4

1476

1880

2042

For ~1m of the COMPASS ammonia target probability for secondary photon to convert into dimuon is ~1×10-5

So, the effective cross section of dimuon pair production via real secondary photons conversion in the target material is ~1 µb that is a few orders of magnitude larget than the cross section of low-mass dimuon production via virual photon.

Prompt photon - low-mass dimuons duality could be used in the collider experiments but not in the experiments with a thick fixed target

 μ barn

0.1515

1.209

2.660

4.155

5.392

6.108

 μ barn

0.01559

0.09720

0.1921

0.2873

0.3715

0.4319

GeV

1

10

100

1000

10000

 ∞

 μ barn

5.047

49.56

121.7

197.6

253.7

279.0

Summary

- Prompt photon production is a unique instrument for study of gluon content in hadrons.
- All the measurements at energy scale ~20 GeV were performed with pion and proton beams only 20-30 years ago It is a good time to come back with new level of experimental techniques and theoretical understanding
- Gluon structure of kaon is unknown. Prompt photon production with kaon beam could provide a unique opportunity to access it.
- Opportunity to have RF-separated kaon beam at CERN can be used to study of pion and kaon gluon structure at fixed target experiments like COMPASS.

Lets look inside kaon!

