Studying nucleon partonic structure with the COMPASS unpolarised Drell-Yan programme

Takahiro Sawada Institute of Physics, Academia Sinica, Taiwan (on behalf of the COMPASS Collaboration)

MENU2016, Kyoto, Japan 27 July, 2016

Outline

- COMPASS facility at CERN
- Nucleon Tomography at COMPASS
- Experimental Set-up
- Kinematics and Acceptance
- Physics Run in 2015
- Reachable Physics from COMPASS-DY
- Feasibility for COMPASS (beyond 2020)
- Reachable Physics from Future COMPASS-DY
- Summary

Drell-Yan experiment at COMPASS

- 2014 : DY Pilot Run (without target polarisation) 17 days of stable data taking
- 2015 : DY Physics Run (1st year)
 - 4 months of stable data taking
 - 2016-2017 : DVCS Run
- 2018 : DY Physics Run (2nd year)

COMPASS facility at CERN

- Fixed target experiment at the end of M2 SPS beam line
- Nearly 220 physicists from 13 countries and 24 institutions

COMPASS facility at CERN

Beam:

- Polarized lepton beam : μ^+ , μ^- 50-280 GeV/c
- Hadron beam : π⁺, π⁻, K⁺, K⁻, p

Target:

- Polarized proton and deuteron target
- Liquid hydrogen target
- Nuclear targets

Various Combinations of Beam & Target

Nucleon Tomography

Nucleon Tomography at COMPASS

COMPASS for Drell-Yan setup

Kinematics and Acceptance

- The COMPASS acceptance covers the valence quark region
- <P_T> ~ 1GeV TMDs induced effects expected to be dominant with respect to the higher QCD corrections

9

Kinematics and Acceptance

- The COMPASS acceptance covers the valence quark region
- <P_T> ~ 1GeV TMDs induced effects expected to be dominant with respect to the higher QCD corrections

Kinematics and Acceptance

Typical acceptance of the DY experiments performed so far was 4-6% (NA10, NA50, E615)

Drell-Yan – Physics run in 2015

Drell-Yan – Physics run in 2015

13

Drell-Yan – Physics run in 2015

Intermediate Mass Region

 $(2 < M_{\mu\mu} < 2.5 \text{ GeV}/c^2)$

- High DY cross section
- Open-charm
- Combinatorial background
- J/ ψ Region (2.5 < $M_{\mu\mu}$ < 4 GeV/ c^2)
 - J/ψ dominant
- High Mass Region ($4 < M_{\mu\mu} < 9 \text{ GeV}/c^2$)
 - Clean DY signal (Negligible background)
 - Low cross section

Reachable Physics from Current COMPASS-DY

Beam: π^-

Target: NH₃(polarised/unpolarised), Al, W **Observable physics process:**

(final state : 2mu): J/ψ , DY, (ψ') , Υ , (open-charm) (3mu): open-beauty (4mu): double J/ψ

Observables and physics:

Angular distributions from polarised NH₃ target:

> Sivers functions of valence quarks in proton (DY)

from unpolarised NH3, Al, W:

- Boer-Mulders functions of valence quarks in proton (DY)
- Lam-Tung violation (DY)
- Higher Twist & Pion DA (DY at large x₁)

A-dependence of P_{τ} distributions (DY, J/ ψ):

- EMC effect
- J/ψ formation

A-dependence of x_1 , x_F distributions (DY, J/ ψ):

(Blue) Physics from

unpolarised nucleon

 Quark energy loss in the cold nuclear matters

Absolute production cross sections (DY, J/ψ , (double J/ψ)):

- pion PDF
- J/ ψ production mechanism
- $\boldsymbol{\Upsilon}$ and open-beauty production

Reachable Physics from Current COMPASS-DY

Beam: π^- Target: NH₃(polarised/unpolarised), Al, W Observable physics process: (final state : 2mu): J/ ψ , DY, (ψ'), Υ , (open-charm) (3mu): open-beauty

(4mu): double J/ψ

Observables and physics:

Angular distributions from polarised NH₃ target:

> Sivers functions of valence quarks in proton (DY)

from unpolarised NH3, Al, W:

- Boer-Mulders functions of valence quarks in proton (DY)
- Lam-Tung violation (DY)
- Higher Twist & Pion DA (DY at large x₁)

A-dependence of P_{τ} distributions (DY, J/ ψ):

- EMC effect
- J/ψ formation

A-dependence of x_1 , x_F distributions (DY, J/ ψ):

(Blue) Physics from

unpolarised nucleon

 Quark energy loss in the cold nuclear matters

Absolute production cross sections (DY, J/ ψ , (double J/ ψ)):

- pion PDF
- J/ ψ production mechanism

 $\boldsymbol{\Upsilon}$ and open-beauty production

Next page

Drell-Yan decay angular distributions

Collins-Soper frame

 θ and ϕ are the decay polar and azimuthal angles of the μ^+ in the dilepton rest-frame

$$\frac{d\sigma}{d\Omega} \propto (1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos 2\phi)$$
$$\propto (W_T (1 + \cos^2 \theta) + W_L (1 - \cos^2 \theta) + W_\Delta \sin 2\theta \cos \phi + W_{\Delta\Delta} \sin^2 \theta \cos 2\phi)$$

 $q\overline{q}$ annilation parton model:

 $O(\alpha_s^0) \lambda = 1, \mu = \nu = 0; W_T = 1, W_L = 0$

Lam-Tung relation (1978): test of QCD effect Collinear pQCD: O(α_s^1), $W_L = 2W_{\Delta\Delta}$; $1 - \lambda - 2\nu = 0$

Violation of Lam-Tung Relation (1)

LT relation was violated at large p_{T}

Violation of Lam-Tung Relation (2)

 $\cos 2\phi$ modulation at large p_T

Hadronic Effect, Boer-Mulders Functions

Boer PRD 60, 014012 (1999)

Spin-orbit correlation of transversely polarized *noncollinear partons* inside an unpolarized hadron

• Boer-Mulders Function h_1^{\perp} : a correlation between quark's k_T and transverse spin \mathbf{S}_T in an unpolarized hadron

Projected Uncertainties

Feasibility for COMPASS (beyond 2020)

First ideas: submitted to European Strategy Preparatory Group, 2012

- Hadron Spectroscopy: 280 GeV, π , K, \bar{p} separation
- GPD E: Measurements with a polarised target
- SIDIS: 100 GeV, transversely polarised *p* and *d* targets
- Drell-Yan: Transversely polarised *d* and *p* targets, Unpolarised *p*, *d* targets, Nuclear targets (EMC effect), *π*, *K*, *p* separation

Dedicated workshop before proposal:

Unseparated $\pi/K/\bar{p}$ beams and beam PID

Fraction of particles in the positive or negative M2-Hadron-beam at COMPASS target

Beam PID by CEDAR (Cerenkov Differential Counters with Achromatic Ring Focus)

LD = 0.50 mm

http://www.staff.uni-mainz.de/jasinsk/index.htm

Possibility of RF Separated $\pi/K/\overline{p}$ Beam ?

First and very preliminary thoughts, guided by

- recent studies for P326
- CKM studies by J.Doornbos/TRIUMF, e.g. http://trshare.triumf.ca/~trjd/rfbeam.ps.gz

E.g. a system with two cavities:

Particle type	From CKM beam	Antiproton beam
Beam momentum (GeV/c)	60	100
Momentum spread $(\%)$	± 1	± 2
Angular emittance H,V (mrad)	$\pm 3.5, \pm 2.5$	$\pm 3.5, \pm 2.5$
Solid angle (μ sterad)	$10-12\pi$	$10-12\pi$
% wanted particles lost on dump	37	20

Kaon and Anti-Proton Flux possibly reaching 10⁷p./s

Reachable Physics from Future COMPASS-DY

Beam: π^-, K^-, \overline{p} Target: polarised NH₃, ⁶LiD unpolarised Long-LH₂, Long-LD₂, Nuclear targets

Observables and physics:

Angular distributions

with π^- beam and trans. polarised ⁶LiD target •flavor separation of Sivers

with \bar{p} beams and trans. polarised NH3 target

 Model independent extraction of the proton Sivers- and Boer-Mulders

with π^-/K^- beams

 Boer-Mulders quark distributions for Pions and Kaons (Blue) Physics from unpolarised nucleon

with K beam (and long-LH₂ target)

- Nucleon strange quark structure
- Kaon PDFs

with $\pi^-/K^-/\bar{p}$ beams

- Differentiating the origin of Lam-Tung violation
- π / K / \bar{p} Distribution Amplitude

with Long-LD₂ and nuclear targets

• EMC effect

with lower momentum π^- beam

• Exclusive production near $x_F \rightarrow 1$ (DY, J/ ψ): GPD and pion DA

Reachable Physics from Future COMPASS-DY

Beam: π^-, K^-, \overline{p} Target: polarised NH₃, ⁶LiD unpolarised Long-LH₂, Long-LD₂, Nuclear targets

Next page

Observables and physics:

Angular distributions

with π^- beam and trans. polarised ⁶LiD target •flavor separation of Sivers

with \bar{p} beams and trans. polarised NH3 target

 Model independent extraction of the proton Sivers- and Boer-Mulders

with π^-/K^- beams

• Boer-Mulders quark distributions for Pions and Kaons

(Blue) Physics from unpolarised nucleon

with K beam (and long-LH₂ target)

- Nucleon strange quark structure
- Kaon PDFs

with $\pi^-/K^-/\bar{p}$ beams

- Differentiating the origin of Lam-Tung violation
- π / K / \bar{p} Distribution Amplitude

with $Long-LD_2$ and nuclear targets

• EMC effect

with lower momentum π^- beam

• Exclusive production near $x_F \rightarrow 1$ (DY, J/ ψ): GPD and pion DA

26

Boer-Mulders from $\bar{p} p$ DY

 $A_U^{\cos 2\varphi} \propto h_{1,\bar{p}}^{\perp q} \otimes h_{1,p}^{\perp q}$

beam BM target BM

DY from anti-proton beam and (polarised) proton target can be used to achieve a model independent extraction of the proton (Sivers-) and Boer-Mulders quark distributions.

After extracting the proton BM

DY from pion/Kaon beams and LH_2 target \rightarrow pion/Kaon BM

Summary

- COMPASS collaboration at CERN have performed a series of Drell-Yan experiments using a high-intensity π⁻ beam with momentum 190-GeV/c impinging on a transversely polarised NH₃ target and unpolarised Al and W targets in 2015. A second year of data taking will be performed in 2018.
 - The experiment provides a greatly improved statistics for the unpolarised Drell-Yan and J/ ψ measurements w.r.t. past experiments.
- We hope it will have a continuation as well in future (beyond 2020)
 - DY program with Improved CEDAR/RF-separated beam and LH₂/LD₂/nuclear targets will bring unique opportunities to address many important unresolved issues in understanding the flavor and TMD structures of proton, antiproton, pion, kaon and nuclei.