COMPASS results on hard exclusive muoproduction

Andrzej Sandacz

National Centre for Nuclear Research, Warsaw

on behalf of the COMPASS Collaboration

QCD Evolution Workshop

Amsterdam, Netherlands, May 30 – June 3, 2016

Main goals of the GPD program

GPD a 3-dimensional image of the partonic structure of the nucleon

$$H(x, \xi=0, t) \rightarrow H(x, r_{y,z})$$

probability interpretation (Burkardt)

this talk

t-dependence of pure DVCS cross section on unpolarised protons

Contribution to the nucleon spin puzzle
 GPD E related to the orbital angular momentum

$$2J_{q} = \int x (H^{q}(x,\xi,0) + E^{q}(x,\xi,0)) dx$$

$$1/2 = 1/2 \Delta \Sigma + \Delta G + \langle L_z^q \rangle + \langle L_z^g \rangle$$

this talk

Exclusive vector meson production on transversely polarised protons and deuterons

COMPASS experiment at CERN

Two basic ingredients of versatile COMPASS experimental setup

secondary beam line M2 from the SPS

- delivers: high energy polarised μ^+ or μ^- beams
 - negative or positive hadron beams

two-stage forward spectrometer SM1 + SM2

≈ 300 tracking detectors planes – high redundancy
 variety of tracking detectors to cope with different particle flux
 from θ = 0 to θ ≈ 200 mrad
 + calorimetry, μID, RICH

A flexibility to carry out a diverse physics programs by modifying mainly the target region

- spin structure of nucleons; polarised muon-nucleon scattering
- hadron spectroscopy in diffractive and central hadron production
- Primakoff reactions and test of chiral perturbative theory
- polarised and unpolarised Drell-Yan scattering
- GPD studies; DVCS and hard exclusive meson production

The COMPASS set-up for the GPD program (starting from 2012)

Main new equipments

ECAL1

Target TOF System

24 inner & outer scintillators 1 GHz SADC readout goal: **310 ps** TOF resol ECALO Calorimeter Shashlyk modules + MAPD readout

ECAL2

Mounting of Recoil Proton Detector ('CAMERA') in clean area at CERN

Recoil particle reconstruction in CAMERA

Proton signature clearly visible after exclusivity selections

$$\frac{Beam Charge & Spin Difference}{\mathcal{D}_{CS,U} \equiv d\sigma(\mu^{+\downarrow}) - d\sigma(\mu^{-\uparrow}) = 2(e_{\mu} a^{BH} Re_{\mu} T^{DVCS} + P_{\mu} d\sigma^{DVCS}_{pol})$$

$$c_{0}^{Int} + c_{1}^{Int} \cos \phi + c_{2}^{Int} \cos 2\phi + c_{3}^{Int} \cos 3\phi$$

$$s_{1}^{DVCS} \sin \phi$$

$$r_{0,1}^{Int} \rightarrow Re(F_{1}\mathcal{H})$$

$$Re \mathcal{H}(\xi,t) = \mathcal{P}\int dx H(x,\xi,t) = \mathcal{P}\int dx H(x,x,t) + \mathcal{D}(t)$$

Interplay of DVCS and BH at 160 GeV

Selection of exclusive single photon events

Estimate of π^0 background

Major source of background for exclusive photon events

Two cases:

- Visible; detected second γ (below DVCS threshold) => events rejected from final sample
- Invisible; one γ lost => estimated from MC normalised to π^0 peak for 'visible' sample

Relative contributions from both processes to π^0 background estimated from combined fits to the distributions of 'exclusivity variables' (M_x^2 , $\Delta \phi$, Δp_T) and $E_{miss} = v - E_{\gamma} + t/(2m_p^2)$

for normalization of BH MC to the data beam flux measurement used

- dominant BH process at large v (small x_{BJ}) clearly visible
- shape of $\boldsymbol{\phi}$ distribution reproduced well by MC
- estimates of π^0 background contributing at small v (large x_{BJ})
- at small v (large x_{BJ}) an excess of DVCS events above BH + background

COMPASS acceptance for DVCS

Binning of acceptance in Q^2 , v and |t|

recall:
$$\frac{d^{3}\sigma^{\mu p}}{dQ^{2}dv\,dt} = \Gamma \frac{d\sigma^{\gamma^{*}p}}{dt}$$

with the virtual photon flux $\Gamma = \Gamma (Q^2, v)$

DVCS cross section and t-slope

Comparison of t-slope B to HERA results

Model independent result

GPDs and Hard Exclusive Meson Production

Factorisation proven only for $\sigma_{\rm L}$ $\sigma_{\rm T}$ suppressed by $1/Q^2$

wave function of meson (DA) additional non-perturbative term

➤at Q² ≈ few GeV² higher order pQCD terms important Chiral-even GPDs
helicity of parton unchanged $H^{q,g}(x,\xi,t)$ $E^{q,g}(x,\xi,t)$ $\widetilde{H}^{q,g}(x,\xi,t)$ $\widetilde{E}^{q,g}(x,\xi,t)$

Chiral-odd GPDs

helicity of parton changed (not probed by DVCS)

$H^q_T(x,\xi,t)$	$E_T^q(x,\xi,t)$
$\widetilde{H}^q_T(x,\xi,t)$	$\widetilde{E}_{T}^{q}(x,\xi,t)$

Flavour separation for GPDs example:

$$E_{\rho^{0}} = \frac{1}{\sqrt{2}} \left(\frac{2}{3} E^{u(+)} + \frac{1}{3} E^{d(+)} + \frac{3}{4} E^{g} / x \right)$$

$$E_{\omega} = \frac{1}{\sqrt{2}} \left(\frac{2}{3} E^{u(+)} - \frac{1}{3} E^{d(+)} + \frac{1}{4} E^{g} / x \right)$$

$$E_{\phi} = -\frac{1}{3} E^{s(+)} + \frac{1}{4} E^{g} / x$$

Diehl, Vinnikov
PLB, 2005

- contribution from gluons at the same order of $\alpha_{\!_{\rm S}}$ as from quarks

Spin-dependent cross section for exclusive meson leptoproduction

$$\begin{split} & \left[\frac{\alpha_{em}}{8\pi^{3}}\frac{y^{2}}{1-\epsilon}\frac{1-x_{Bj}}{x_{Bj}}\frac{1}{Q^{2}}\right]^{-1}\frac{d\sigma}{dx_{Bj}dQ^{2}dtd\phi\phi_{s}} \\ & = \frac{1}{2}(\sigma_{++}^{++}+\sigma_{+-}^{--})+\epsilon\sigma_{00}^{++}-\epsilon\cos(2\phi)\operatorname{Re}\sigma_{+-}^{++}-\sqrt{\epsilon(1+\epsilon)}\cos\phi\operatorname{Re}(\sigma_{+0}^{++}+\sigma_{+0}^{--}) \\ & -P_{\ell}\sqrt{\epsilon(1-\epsilon)}\sin\phi\operatorname{Im}(\sigma_{+0}^{++}+\sigma_{+0}^{--}) \\ & -S_{L}\left[\epsilon\sin(2\phi)\operatorname{Im}\sigma_{+-}^{++}+\sqrt{\epsilon(1+\epsilon)}\sin\phi\operatorname{Im}(\sigma_{+0}^{++}-\sigma_{+0}^{--})\right] \\ & +S_{L}P_{\ell}\left[\sqrt{1-\epsilon^{2}}\frac{1}{2}\left(\sigma_{++}^{++}-\sigma_{++}^{--}\right)-\sqrt{\epsilon(1-\epsilon)}\cos\phi\operatorname{Re}(\sigma_{+0}^{++}-\sigma_{+0}^{--})\right] \\ & -S_{T}\left[\sin(\phi-\phi_{S})\operatorname{Im}(\sigma_{+-}^{++}+\epsilon\sigma_{00}^{--})+\frac{\epsilon}{2}\sin(\phi+\phi_{S})\operatorname{Im}\sigma_{+-}^{++}+\frac{\epsilon}{2}\sin(3\phi-\phi_{S})\operatorname{Im}\sigma_{+-}^{-+} \\ & +\sqrt{\epsilon(1+\epsilon)}\sin\phi_{S}\operatorname{Im}\sigma_{+0}^{++}+\sqrt{\epsilon(1+\epsilon)}\sin(2\phi-\phi_{S})\operatorname{Im}\sigma_{+0}^{-+}\right] \\ & +S_{T}P_{\ell}\left[\sqrt{1-\epsilon^{2}}\cos(\phi-\phi_{S})\operatorname{Re}\sigma_{+0}^{++}\right] - \sqrt{\epsilon(1-\epsilon)}\cos(2\phi-\phi_{S})\operatorname{Re}\sigma_{+0}^{-+}\right]. \end{split}$$

 $\sigma_{\it mn}^{\it ij}$: helicity-dependent photoabsorption cross sections and interference terms

$$\sigma_{mn}^{ij}(x_B,Q^2,t)\propto \sum (M_m^i)^*M_n^j$$

 M_m^i : amplitude for subprocess $\gamma^* p \to V p'$ with photon helicity *m* and target proton helicity *i*

$$\epsilon = \frac{1 - y - \frac{1}{4}y^2\gamma^2}{1 - y + \frac{1}{2}y^2 + \frac{1}{4}\gamma^2}$$
$$\gamma = 2x_{Bi}M_P/Q$$

Azimuthal asymmetries of cross section for exclusive meson leptoproduction

 σ_{0} - 'unpolarised cross section'

$$\sigma_0 = \frac{1}{2} \left(\sigma_{++}^{++} + \sigma_{++}^{--} \right) + \epsilon \sigma_{00}^{++} = \sigma_L + \epsilon \sigma_T$$

COMPASS polarised target

Exclusive ω production on p^{\uparrow} at COMPASS

(Selections similar for ρ^0 sample)

 $\begin{array}{c|c} \mu \ N \rightarrow \mu \ \omega \ N \end{array} \quad \text{Trans} \\ \hline & & & \\ &$

Transversely polarised proton target (NH₃), 2010 data

note: there was no Recoil Detector for these data

only two hadron tracks of opposite charge associated to the primary vertex only two ECAL clusters time-correlated with beam and not associated to a charged particle

Extraction of asymmetries and subtraction of non-exclusive background

- $\rho^{\rm 0}$ analysis
 - 1D (deuteron) and 2D (proton) binned maximum likelihood estimator with subtraction of background in (ϕ , ϕ _s) bins
- ω analysis
 - Unbinned maximum likelihood estimator with simultaneous fit of signal and background asymmetries

Background rejection:

For each target cell and polarization state

shape of semi-inclusive background from MC (LEPTO with COMPASS tuning + simulation of spectrometer response + reconstruction as for real data)

MC weighted using ratio between real data and MC for wrong charge combination sample $(h^+h^+\gamma\gamma + h^-h^-\gamma\gamma)$

$$w(E_{miss}) = \frac{N_{RD}^{h+h+\gamma\gamma}(E_{miss}) + N_{RD}^{h-h-\gamma\gamma}(E_{miss})}{N_{MC}^{h+h+\gamma\gamma}(E_{miss}) + N_{MC}^{h-h-\gamma\gamma}(E_{miss})}$$

Normalization of MC to the real data using two component fit Gaussian function (signal) + shape from MC (bkg)

• $A_{UT}^{sin(\phi-\phi_s)}$ for transversely polarised protons and deuterons small, compatible with 0

- for the proton agreement with HERMES results COMPASS results with statistical errors improved by factor 3 and extended kinematic range
- for the deuteron the first measurement
- reasonable agreement with predictions of the GPD model of Goloskokov Kroll

[EPJ C59 (2009) 809]

small values expected due to approximate cancellation of contributions from E^u and E^d , $E^u \approx -E^d$ (cf. upper-right plot)

Complete set of transverse target spin asymmetries for exlusive ρ^0 production on p^{\uparrow}

Single spin asymmetries

- Improved method of extraction (2D)
- Simultaneous extraction of
 5 single spin asymmetries and
 3 double spin asymmetries
 for transversely polarised protons

→ PLB 731 (2014) 19

- predictions of GPD model of Goloskokov-Kroll
- reasonable agreement with GK model (also for not-shown double spin asym.)

indication of H_T, 'transversity' GPD, contribution

larger effects for some asymmetries expected for exclusive oproduction

Azimuthal asymmetries for exlusive () production on p¹

Single spin asymmetries

- new result, to be published
- unbinned maximum likelihood method
- extraction of 8 transverse spin asymmetries

when 'global' comparison to the data no clear preference for any version

Comparison to HERMES asymmetries for ω production on p^{\uparrow}

✓ Note: contribution of pion pole decreases with W

-> each experiment to be compared to corresp. predictions

COMPASS uncertainties smaller by a factor > 2

✓ within large errors combined HERMES data compatible with all 3 scenarios

(authors conclusion 'data favor a positive $\pi\omega$ transition form factor')

Future measurements at JLab12
 EPJ A48 (2012) 187
 expected to resolve the issue of πω transition form factor

COMPASS-II time lines

Part of the COMPASS-II proposal approved and scheduled by CERN

- > 2012: pion and kaon polarisabilities (Primakoff) + comissioning and pilot run for DVCS
- > 2013-2014: long SPS/LHC shutdown
- > 2014-2015: Drell-Yan measurements with transversely polarised protons (NH₃ target)
- > 2016-2017: stage 1 of GPD program and in parallel SIDIS (LH target)
- > 2018: Drell-Yan measurements with transversely polarised protons (NH₃ target)

Measurements to be pursued at COMPASS-II > 2020 (subject to a new proposal)

- ✓ stage 2 of GPD program with transversely polarised NH₃ target and RPD
- ✓ SIDIS (high statistics) from transversely polarised deuteron and proton targets
- ✓ Drell-Yan on transversely polarised deuterons, unpolarised protons and nuclear targets
- ✓ hadron spectroscopy program with high-intensity separated kaon and antiproton beams

Backup

Azimuthal dependence of exclusive photon xsec.

from Belitsky, Kirchner, Müller :

e,

polarized beam off unpolarized target

$$d\sigma_{(\mu\rho \to \mu\rho\gamma)} = d\sigma^{BH} + d\sigma^{DVCS}_{unpol} + P_{\mu} d\sigma^{DVCS}_{pol} + e_{\mu} a^{BH} Re A^{DVCS} + e_{\mu} P_{\mu} a^{BH} Im A^{DVCS}$$

$$d\sigma^{BH} = \frac{\Gamma(x_{\beta}, Q^{2}, t)}{P_{1}(\varphi)P_{2}(\varphi)} (c_{0}^{BH} + C_{1}^{BH} \cos \varphi + c_{2}^{BH} \cos 2\varphi) \leftarrow \text{Known expression}$$

$$d\sigma^{DVCS}_{unpol} = \frac{e^{6}}{\gamma^{2}Q^{2}} (c_{0}^{DVCS} + C_{1}^{DVCS} \cos \varphi + c_{2}^{DVCS} \cos 2\varphi)$$

$$P_{\mu} \times d\sigma^{DVCS}_{pol} = \frac{e^{6}}{\gamma^{2}Q^{2}} (s_{0}^{DVCS} \sin \varphi)$$

$$e_{\mu} \times a^{BH} \Re e A^{DVCS} = \frac{e^{6}}{x\gamma^{3}tP_{1}(\varphi)P_{2}(\varphi)} (c_{0}^{Int} + c_{1}^{Int} \cos \varphi + c_{2}^{Int} \cos 2\varphi + c_{3}^{Int} \cos 3\varphi)$$

$$e_{\mu}P_{\mu} \times a^{BH} \Im m A^{DVCS} = \frac{e^{6}}{x\gamma^{3}tP_{1}(\varphi)P_{2}(\varphi)} (s_{1}^{Int} \sin \varphi + s_{2}^{Int} \sin 2\varphi)$$
Twist-2 >> Twist-3 Twist-2 gluon

 γ^*

A

COMPASS acceptance for DVCS (1)

Symmetric acceptance in ϕ leads to cancellation of the interference terms when integrated over ϕ

Beam Charge&Spin Difference of cross sections

$$\mathcal{D}_{CS,U} \equiv d\sigma(\mu^{+\downarrow}) - d\sigma(\mu^{-\uparrow}) = c_0^{Int} + c_1^{Int} \cos \phi + c_2^{Int} \cos 2\phi + c_3^{Int} \cos 3\phi + s_1^{DVCS} \sin \phi$$

$$c_{0,1}^{Int} \rightarrow \mathcal{R}e(F_1\mathcal{H})$$

t-slope measurement for exclusive ρ^0 production

 $(=Q^2 \text{ for DVCS})$

Exclusive ρ^{0} production on p^{\uparrow} and d^{\uparrow} at COMPASS

Transversely polarised proton target (NH₃), 2007, 2010 Transversely polarised deuteron target (⁶LiD), 2003-2004

note: there was no RPD for these data

only two hadron tracks of opposite charge associated to the primary vertex

Role of pion exchange

- Effect known since early photoproduction experiments
- At COMPASS kinematics:
 - small for ρ⁰ production
 - sizable for ω production
- Unnatural parity exchange process
 → impact on helicity-dependent observables
- Crucial for description of SDMEs for excl. ω production
 → Goloskokov and Kroll, Eur. Phys. J. A50 (2014) 9, 146
- Sign of $\pi\omega$ form factor not resolved from SDMEs data \rightarrow azimuthal asymmetries more sensitive

