

Polarised Target for Drell-Yan Experiment in COMPASS at CERN II

Genki Nukazuka (Yamagata Univ.) The 22nd International on behalf of the COMPASS Spin Symposium Collaboration September 27 2016

COMPASS

Table of Contents

COMPASS

This talk is the continuation of Jan's talk.

Introduction Polarised Target

- Cryostat
- Temperature measurement
- Magnets
- Target material and target cell
- Polarisation method
- Microwave (M.W.) system
- Polarisation measurement

Results

- Calibration and empty cell measurement
- Polarisation
- Relaxation time

Summary

Protons in a solid ammonia (NH₃) are used as a polarisd target.

Paramagnetic centers was created by irradiating with electron beam.

The NH₃ has typically $10^{-4} - 10^{-3}$ free radicals/nucleus.

Sep. 27 2016 Polarised Target for Drell-Yan Experiment in COMPASS at CERN, part II CA Genki Nukazuka 4 / 30

Target cell and NMR coil

Target cell

- 55 cm × φ 4 cm
- made with (C₂F₃Cl)_n to reduce the effect on polarisation measurement
- 3 outer coils and 2 inner coils for each cell
- Since high intensity hadron beam on PT is the first attempt in COMPASS, we installed inner coils which are more sensitive to the effect of the beam
- 2 cells were placed 20 cm apart

Picture of coil1 (inner)

Picture of coil2 (outer)

NMR coil

- 1 cm × 5 cm
- made with stainless steel
- inner coils are wrapped with with 50 µm thick PCTFE foil

Sep. 27 2016 Polarised Target for Drell-Yan Experiment in COMPASS at CERN, part II COMPASS at CE

Definition of polarisation for a spin 1/2 particle :

$$P \equiv \frac{N^+ - N^-}{N^+ + N^-}$$

where N⁺⁽⁻⁾ is a number of particles with parallel(antiparallel) spin to the magnetic field direction

Polarisation in Thermal Equilibrium state (T.E.):

$$P_{T.E.} = anh\left(rac{\mu B}{k_B T}
ight)$$

Example :

where

- μ : a magnetic moment of the particle
- B : a magnitude of an external magnetic field
- k_{B} : the Boltzmann constant
- T : an absolute temperature

Dynamic Nuclear Polarisation (DNP) method :

- born in Illinois and have developed all over the world

Polarisation method

- transfers electron polarisation to protons by irradiation M.W.

COMPASS

A pair of proton and electron in the external magnetic field has 4 energy levels.

Positive(negative) polarisation :

- M.W. irradiation of energy B-C(A-D)
- Pairs in C(D) state are excited to B(A) state.
- Pairs in B(A) state relax to D(C).

Diagram of DNP method

Sep. 27 2016 Polarised Target for Drell-Yan Experiment in COMPASS at CERN, part II Compared For Drell-Yan Experiment in Compared For Drell-Yan Experiment in COMPASS at CERN, part II Compared For Drell-Yan Experiment in COMPASS at CERN, part II Compared For Drell-Yan Experiment in COMPASS at CERN, part II Compared For Drell-Yan Experiment in Compared For Drell-Yan Expere

Diagram of M.W. system

Equipment

- M.W. generator extended interaction oscillator, 20 W
- Power supplies
 - Varian VPW2838 and CPI VPW2827
- Power control
- Frequency counters
 - Phase Matrix EIP-548-B
- Power meter
 - Millitech DET-12-RPFW0

Pictures of M.W. system and of power supplies.

Sep. 27 2016 Polarised Target for Drell-Yan Experiment in COMPASS at CERN, part II COMPASS at CE

Microwave system

Sep. 27 2016 Polarised Target for Drell-Yan Experiment in COMPASS at CERN, part II COMPASS at CE

COMPASS Microwave system

- M.W. generator extended interaction oscillator,
- Power supplies
 - Varian VPW2838 and **CPI VPW2827**
- Power control
- Frequency counters
 - Phase Matrix EIP-548-B
- Power meter
 - Millitech DET-12-RPFW0

Pictures of M.W. system and of power supplies.

Polarised Target for Drell-Yan Experiment in COMPASS at CERN, part II Compared Genki Nukazuka 10/30 Sep. 27 2016

Microwave system

COMPASS

M.W. cavity

- made of 1 mm copper
- cylindrical part : 1421 mm × φ_{internal} 410mm
- conical part : 280 mm long at downstream end
- modified from 3 cells config. to 2 cells config

Polarisation measurement

Nuclear Magnetic Resonance (NMR)

A polarisation is proportional to magnetization of material. We can measure magnetic susceptibility by NMR.

Polarisation measurement Nuclear Magnetic Resonance (NMR)

A polarisation is proportional to magnetization of material. We can measure magnetic susceptibility by NMR.

Synthesiser PTS250 sweeps
 106.4 ± 0.3 MHz and causes NMR.

COMPASS

- DC offset is subtracted from outputs of Q-meter.
- Signals are converted to digital and recorded

Nuclear Magnetic Resonance (NMR)

Polarisation measurement

A polarisation is proportional to magnetization of material. We can measure magnetic susceptibility by NMR.

Synthesiser PTS250 sweeps
 106.4 ± 0.3 MHz and causes NMR.

COMPASS

- DC offset is subtracted from outputs of Q-meter.
- Signals are converted to digital and recorded

Diagram of pol. measurement system

Polarisation is proportional to the area of NMR signal:

Sep. 27 2016 Polarised Target for Drell-Yan Experiment in COMPASS at CERN, part II Compared For Drell-Yan Experiment in Compared For Drell-Yan Experiment in COMPASS at CERN, part II Compared For Drell-Yan Experiment in COMPASS at CERN, part II Compared For Drell-Yan Experiment in COMPASS at CERN, part II Compared For Drell-Yan Experiment in Compare

1. Pol. in long. direction for 1 day \rightarrow Pol. reaches ~ 80%

- Pol. in long. direction for 1 day
 → Pol. reaches ~ 80%
- 2. Pol. rotation from long. to transv. direction, keep pol. with frozen mode

- 1. Pol. in long. direction for 1 day \rightarrow Pol. reaches ~ 80%
- 2. Pol. rotation from long. to transv. direction, keep pol. with frozen mode
- 3. Physics data taking for 1 week, no pol. measurement

- Pol. in long. direction for 1 day
 → Pol. reaches ~ 80%
- 2. Pol. rotation from long. to transv. direction, keep pol. with frozen mode
- 3. Physics data taking for 1 week, no pol. measurement

4. Pol. rotation from transv. to long. for relaxation time measurement

- Pol. in long. direction for 1 day
 → Pol. reaches ~ 80%
- 2. Pol. rotation from long. to transv. direction, keep pol. with frozen mode
- 3. Physics data taking for 1 week, no pol. measurement

- 4. Pol. rotation from transv. to long. for relaxation time measurement
- 5. Repeat step 1 4 with opposite pol. configurations

Sep. 27 2016 Polarised Target for Drell-Yan Experiment in COMPASS at CERN, part II Compared For Drell-Yan Experiment in Compared For Drell-Yan Experiment in COMPASS at CERN, part II Compared For Drell-Yan Experiment in COMPASS at CERN, part II Compared For Drell-Yan Experiment in COMPASS at CERN, part II Compared For Drell-Yan Experiment in Compare

Introduction Polarised Target

- Cryostat
- Temperature measurement
- Magnets
- Target material and target cell
- Polarisation method
- Microwave (M.W.) system
- Polarisation measurement

Results

- Calibration and empty cell measurement
- Polarisation
- Relaxation time

Summary

Thermal equilibrium measurements were performed at

- 0.99 K, twice
- 1.28 K
- 1.47 K

Accuracy was about 1 - 2%

Sep. 27 2016 Polarised Target for Drell-Yan Experiment in COMPASS at CERN, part II COMPASS at CE

coil3

- Protons in target cell (not polarizable) contribute to NMR signal.
- Measurement without NH₃ performed at 0.97 K.

Sep. 27 2016 Polarised Target for Drell-Yan Experiment in COMPASS at CERN, part II Compared to Compare 22/30

coil3

- Protons in target cell (not polarizable) contribute to NMR signal.
- Measurement without NH₃ performed at 0.97 K.

Sep. 27 2016 Polarised Target for Drell-Yan Experiment in COMPASS at CERN, part II Compared to Compare 23/30

coil3 -0.05 -0. Amplitude 0.15 -0.2 • T.E. @ 0.99 K -0.25 Empty cell @ 0.97 K T.E. - Empty cell -0.3 106.3 106.2 106.4 106.5 106.6 106.7 106.1 Frequncy (MHz) coil3 0 -5 -10 Signal area -20 -52 -30 -35 -40 0.8 0.2 0.4 0.6 0 (Temperature)⁻¹ (K⁻¹)

Coil	Calibration Constant	Statistical Error (%)	Systematic Error (%)
1	-38.13	0.52	3.15
2	-17.71	1.70	3.15
3	-27.36	0.47	3.15
4	-21.33	1.14	3.15
5	-33.40	0.22	3.15
6	-15.06	1.20	3.15
7	- 9.00	1.77	3.15
8	-17.55	0.36	3.15
9	-14.70	0.58	3.15
10	-36.22	0.37	3.15

Signal area = (Calibration constant) / T

Statistical errors in 2015 are better than ones in 2011 by 1 - 2%.

Sep. 27 2016 Polarised Target for Drell-Yan Experiment in COMPASS at CERN, part II Compared to Compare 24/30

COMPASS

Maximum PolarisationTypical polarisation during phys. data taking
upstream : 82.7%, -86.0%downstream : 79.3%, -77.8%upstream : 74.2%, -71.4%
downstream : 69.2%, -67.0%

Sep. 27 2016 Polarised Target for Drell-Yan Experiment in COMPASS at CERN, part II Compared to Compare 25/30

Relaxation time

COMPASS

• First (Last) point in physics run (not measured)

- Polarisation is measured in longitudinal mode
- Magnetic field is rotated from longitudinal to transverse
 - Polarisation decreases exponentially while physics data taking :

 $P=P_0e^{-t/ au}$ au : relaxation time

A sketch of polarisation and relaxation time

 0.5% pol. loss was observed due to field rotation

Sep. 27 2016 Polarised Target for Drell-Yan Experiment in COMPASS at CERN, part II COMPASS at CE

Averaged relaxation time of each cell and each polarity.

	Positive Pol.	Negative Pol.
Upstream	1400	1200
Downstream	1000	740
		(h)

- Relaxation time depends on up-/downstream and positive/negative pol.
 - Relaxation time was typically 1000 hours.
- Relaxation time of downstream cell is shorter than upstream cell.

Relaxation time with and without beam

Averaged relaxation time of each cell and each polarity.

COMPASS

with beam	Positive Pol.	Negative Pol.
Upstream	1400	1200
Downstream	1000	740
		(h)

- Relaxation time depends on up-/downstream and positive/negative pol.
 - Relaxation time was typically 1000 hours.
- Relaxation time of downstream cell is shorter than upstream cell.

Relaxation time of each cell and each polarity without beam.

without beam	Positive Pol.	Negative Pol.	 Relaxation tim beam is longe
Upstream	3600	2900	with beam
Downstream	4900	1700 (h)	Effect of bear

e without r than

n exists

Polarised Target for Drell-Yan Experiment in COMPASS at CERN, part II Genki Nukazuka 28/30 Sep. 27 2016

Relaxation time : Comparison between past results

COMPASS

Year	Beam	Material	Magnetic field (T)	Maximum polarisation	Relaxation time (h)
SMC (1996)	μ 190 GeV	OLD	0.5		500
2007	μ 160 GeV	OLD	0.6	93 , -95	4000
2010	μ 160 GeV	OLD	0.6	87,-87	9000
2015	Hadron, 190 GeV	NEW	0.6	82 , -86	1000

OLD material was made in 1996 or earlier. NEW material was made in 2011.

Although using high intensity hadron beam in 2015, we achieved to obtain high proton polarisation.

Sep. 27 2016 Polarised Target for Drell-Yan Experiment in COMPASS at CERN, part II Compared to Compare 29/30

- Target material NH₃, target cell, M.W. system and pol. measurement system were presented.
- Polarisation is build up with DNP method and measured by NMR technique in COMPASS.
- Thermal equilibrium measurement and empty cell measurement were performed.
- Polarisation and relaxation time in 2015 were presented.
 - Polarisation
 - ✓ Polarisation ~ 80% was obtained after 24 h building up.
 - \checkmark Typical polarisation in physics data taking was 70%.
 - Relaxation time
 - ✓ Typical relaxation time was 1000 h.