Polarised target for Drell–Yan experiment in COMPASS at CERN part I

Jan Matoušek

Charles University in Prague and Università degli studi di Trieste

On behalf of the COMPASS Collaboration

http://www.forbes.com/pictures/eidm45elgl/university-of-illinois-urbana-champaign-2/#1d94a647a6f1

27. 9. 2016

The 22nd international spin symposium, Urbana, Illinois

Outline

- The collaboration
- 2 Drell–Yan programme
- Polarised target
- Polarised target dilution cryostat
- 5 Polarised target magnet
- 6 Conclusion of the part I

Outline

- The collaboration
- 2 Drell–Yan programme
- Polarised target
- Polarised target dilution cryostat
- 6 Polarised target magnet
- 6 Conclusion of the part l

The collaboration: Institutes and location

- Collaboration: 24 institutions from 13 countries (\approx 220 physicists).
- Experimental area: CERN Super Proton Synchrotron (SPS) North Area.
- Secondary beams of μ or hadrons at 160-200 GeV.
- Fixed targets.

Image credit: Wikimedia Commons, https://en.wikipedia.org/wiki/File: Location Large Hadron Collider.PNG

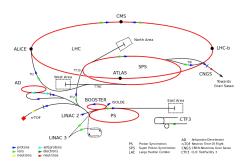


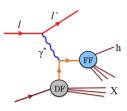
Image credit: Wikimedia Commons, https://en.wikipedia.org/wiki/File:Cern-accelerator-complex.svg

The collaboration: Apparatus

COMPASS set-up for polarised μ programme.

- Two-stage spectrometer.
- About 350 detector planes.
- Particle identification (RICH, calorimeters, μ filters).
- LH₂ and nuclear targets, large solid-state polarised targets (NH₃ and ⁶LiD).

The collaboration: Physics programme


Nucleon Structure

- COMPASS I (2002–2011)
 - DIS and SIDIS on L-polarised targets $\vec{\mu}^+ + \vec{N} \rightarrow \mu^+ + X$

$$\vec{\mu}^+ + \vec{N} \to \mu^+ + X$$
$$\vec{\mu}^+ + \vec{N} \to \mu^+ + h + X$$

 \rightarrow helicity distributions of quarks and gluons.

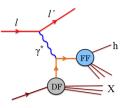
- SIDIS on T-polarised targets $\mu^+ + N^{\uparrow} \rightarrow \mu^+ + X + h \rightarrow$ Sivers and Collins effects and more.
- COMPASS II (2012–2017)
 - 2015: Drell-Yan with T-polarised p target $\pi^- + p^\uparrow \to \mu^+ + \mu^- + X$.
 - 2016–2017: DVCS and SIDIS with LH₂ target (DVCS: $\mu + p \rightarrow \mu + p + \gamma$ to get GPDs).

SIDIS reaction.

Hadron spectroscopy, chiral dynamics

- Study of light meson spectrum (using a partial-wave analysis of 3π final states).
- 2012: π and K polarisability by scattering π in nuclear Coulomb field.
- And more

The collaboration: Physics programme


Nucleon Structure

- COMPASS I (2002–2011)
 - DIS and SIDIS on L-polarised targets $\vec{\mu}^+ + \vec{N} \rightarrow \mu^+ + X$

$$\vec{\mu}^+ + N \rightarrow \mu^+ + X$$

 $\vec{\mu}^+ + \vec{N} \rightarrow \mu^+ + h + X$

 \rightarrow helicity distributions of quarks and gluons.

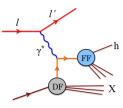
- SIDIS on T-polarised targets μ⁺ + N[↑] → μ⁺ + X + h
 → Sivers and Collins effects and more.
- COMPASS II (2012–2017)
 - 2015: Drell-Yan with T-polarised p target $\pi^- + p^{\uparrow} \rightarrow \mu^+ + \mu^- + X$.
 - 2016–2017: DVCS and SIDIS with LH₂ target (DVCS: $\mu + p \rightarrow \mu + p + \gamma$ to get GPDs).

SIDIS reaction.

Hadron spectroscopy, chiral dynamics

- Study of light meson spectrum (using a partial-wave analysis of 3π final states).
- 2012: π and K polarisability by scattering π in nuclear Coulomb field.
- And more...

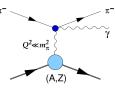
The collaboration: Physics programme


Nucleon Structure

- COMPASS I (2002–2011)
 - DIS and SIDIS on L-polarised targets

$$\vec{\mu}^+ + \vec{N} \to \mu^+ + X$$
$$\vec{\mu}^+ + \vec{N} \to \mu^+ + h + X$$

→ helicity distributions of quarks and gluons.


- SIDIS on T-polarised targets $\mu^+ + N^{\uparrow} \rightarrow \mu^+ + X + h$ \rightarrow Sivers and Collins effects and more
- COMPASS II (2012–2017)
 - 2015: Drell-Yan with T-polarised p target $\pi^- + p^{\uparrow} \rightarrow \mu^+ + \mu^- + X$.
 - 2016–2017: DVCS and SIDIS with LH₂ target (DVCS: $\mu + p \rightarrow \mu + p + \gamma$ to get GPDs).

SIDIS reaction.

Hadron spectroscopy, chiral dynamics

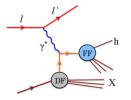
- Study of light meson spectrum (using a partial-wave analysis of 3π final states).
- 2012: π and K polarisability by scattering π in nuclear Coulomb field.
- And more...

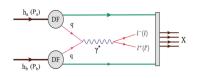
Primakoff reaction.

Outline

- 1 The collaboration
- 2 Drell-Yan programme
- Polarised target
- Polarised target dilution cryostat
- 6 Polarised target magnet
- 6 Conclusion of the part 1

Drell–Yan programme: Motivation


COMPASS


T-polarised SIDIS

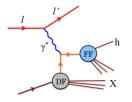
- COMPASS, d^{\uparrow} 2002–2004, p^{\uparrow} 2007 & 2010.
- $A = \mathrm{DF}_{q,h_{\mathrm{targ}}} \otimes \mathrm{FF}_{q \to h}$.

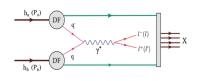
T-polarised Drell-Yan

- COMPASS, p^{\uparrow} 2015 (1st ever).
- low x-section.
- $A = \mathrm{DF}_{q,h_{\mathrm{targ}}} \otimes \mathrm{DF}_{\bar{q},h_{\mathrm{beam}}}.$

- Unique test of the universality of DF (Sivers function sign change).
- Partonic structure of hadrons (leading twist):
 - \vec{k}_{T} integrated: number density, helicity, transversity PDFs.
 - $k_{\rm T}^2$ dependent: 5 more distributions, including
 - Poor Muldare BDE (T. nol. quarks in 1-poi. hadron)

Drell–Yan programme: Motivation




T-polarised SIDIS

- COMPASS, d^{\uparrow} 2002–2004, p^{\uparrow} 2007 & 2010.
- $A = \mathrm{DF}_{q,h_{\mathrm{targ}}} \otimes \mathrm{FF}_{q \to h}$.

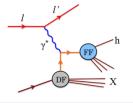
T-polarised Drell-Yan

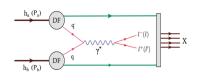
- COMPASS, p^{\uparrow} 2015 (1st ever).
- low x-section.
- $A = \mathrm{DF}_{q,h_{\mathrm{targ}}} \otimes \mathrm{DF}_{\bar{q},h_{\mathrm{beam}}}.$

- Unique test of the universality of DF (Sivers function sign change).
- Partonic structure of hadrons (leading twist):
 - $\vec{k}_{\rm T}$ integrated: number density $\stackrel{\bullet}{\bullet}$, helicity $\stackrel{\bullet}{\bullet}$ - $\stackrel{\bullet}{\bullet}$, transversity $\stackrel{\bullet}{\bullet}$ - $\stackrel{\bullet}{\bullet}$ PDFs.
 - κ_{T} dependent: 5 more distributions, including Sivers PDF (unpol. quarks in T-pol. ha

Boer-Mulders PDF

(T-pol. quarks in unpol. hadron)


Drell-Yan programme: Motivation


T-polarised SIDIS

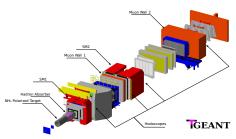
- COMPASS, d^{\uparrow} 2002–2004, p^{\uparrow} 2007 & 2010.
- $A = \mathrm{DF}_{q, h_{\mathrm{targ}}} \otimes \mathrm{FF}_{q \to h}$.

T-polarised Drell-Yan

- COMPASS, p^{\uparrow} 2015 (1st ever).
- low x-section.
- $A = \mathrm{DF}_{q,h_{\mathrm{targ}}} \otimes \mathrm{DF}_{\bar{q},h_{\mathrm{beam}}}$.

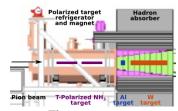
- Unique test of the universality of DF (Sivers function sign change).
- Partonic structure of hadrons (leading twist):
 - $\vec{k}_{\rm T}$ integrated: number density \odot , helicity \odot \odot -, transversity \circ \circ PDFs.
 - k_T^2 dependent: 5 more distributions, including

Sivers PDF



(unpol. quarks in T-pol. hadron)

Boer–Mulders PDF 🐧 - 🕟 (T-pol. quarks in unpol. hadron)


Drell-Yan programme: Characteristics and challenges

3D view of the DY set-up in COMPASS MC simulation.

- Transversely polarised p (NH₃) target plus Al and W targets.
- 190 GeV/ $c \pi^-$ beam (plus $\approx 2.5\% \text{ K}^-, 0.5\% \text{ p}^-$)
- Low x-section \rightarrow high beam flux needed ($\approx 10^9 \ \pi^-/\mathrm{spill}$ of 10 s).
- Hadron absorber μ filter, ensures reasonable detector occupancies.

The target region.

Outline

- The collaboration
- 2 Drell-Yan programme
- Polarised target
- Polarised target dilution cryostat
- O Polarised target magnet
- 6 Conclusion of the part I

10 / 24

- μ SIDIS (& Drell-Yan too): need maximize # interactions in the target.
- \bullet \to Large solid-state target.

- \bullet Dilution cryostat can meet the cooling needs in both regimes.
- polarisation measurement → continuous-wave NMR

- μ SIDIS (& Drell-Yan too): need maximize # interactions in the target.
- \bullet \to Large solid-state target.
- Unlike e⁻, nuclei reach polarisation only $P = \mathcal{O}(0.01)$, even at low T & high B.
- Relaxation times (to equilib. P) become very long.
- \bullet \to Dynamic nuclear polarisation (DNP) is needed.
- Fast 180° rotations of P, transverse P. \rightarrow Frozen spin mode.
- \bullet Dilution cryostat can meet the cooling needs in both regimes.
- polarisation measurement \rightarrow continuous-wave NMR

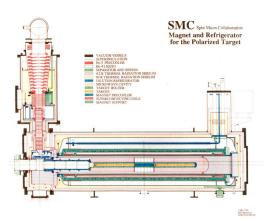
- μ SIDIS (& Drell-Yan too): need maximize # interactions in the target.
- $\bullet \to \text{Large solid-state target.}$
- Unlike e⁻, nuclei reach polarisation only $P = \mathcal{O}(0.01)$, even at low T & high B.
- Relaxation times (to equilib. P) become very long.
- \bullet \to Dynamic nuclear polarisation (DNP) is needed.
 - \rightarrow High magnetic field ($\mathcal{O}(1)$ T).
 - \rightarrow Microwave system.
 - \rightarrow Very low temperature ($\approx 0.3 \text{ K}$) & high cooling power ($\mathcal{O}(0.1) \text{ W}$).
- Fast 180° rotations of P, transverse P. \rightarrow Frozen spin mode.
- \bullet Dilution cryostat can meet the cooling needs in both regimes.
- polarisation measurement → continuous-wave NMR

- μ SIDIS (& Drell-Yan too): need maximize # interactions in the target.
- \bullet \rightarrow Large solid-state target.
- Unlike e⁻, nuclei reach polarisation only $P = \mathcal{O}(0.01)$, even at low T & high B.
- Relaxation times (to equilib. P) become very long.
- \bullet \to Dynamic nuclear polarisation (DNP) is needed.
 - \rightarrow High magnetic field ($\mathcal{O}(1)$ T).
 - \rightarrow Microwave system.
 - \rightarrow Very low temperature ($\approx 0.3 \text{ K}$) & high cooling power ($\mathcal{O}(0.1) \text{ W}$).
- Fast 180° rotations of P, transverse P. \rightarrow Frozen spin mode.
 - → Extremely low temperature (< 100 mK) & high cooling power ($\mathcal{O}(1)$ mW).
- ullet Dilution cryostat can meet the cooling needs in both regimes.
- \bullet polarisation measurement \rightarrow continuous-wave NMR
 - \rightarrow Precise thermometry for TE calibration at ≈ 1 K.

- μ SIDIS (& Drell-Yan too): need maximize # interactions in the target.
- $\bullet \to \text{Large solid-state target.}$
- Unlike e⁻, nuclei reach polarisation only $P = \mathcal{O}(0.01)$, even at low T & high B.
- Relaxation times (to equilib. P) become very long.
- \bullet \to Dynamic nuclear polarisation (DNP) is needed.
 - \rightarrow High magnetic field ($\mathcal{O}(1)$ T).
 - \rightarrow Microwave system.
 - \rightarrow Very low temperature ($\approx 0.3 \text{ K}$) & high cooling power ($\mathcal{O}(0.1) \text{ W}$).
- Fast 180° rotations of P, transverse P. \rightarrow Frozen spin mode.
 - \rightarrow Extremely low temperature (< 100 mK) & high cooling power ($\mathcal{O}(1)$ mW).
- \bullet Dilution cryostat can meet the cooling needs in both regimes.
- polarisation measurement → continuous-wave NMR

- μ SIDIS (& Drell-Yan too): need maximize # interactions in the target.
- $\bullet \to \text{Large solid-state target.}$
- Unlike e⁻, nuclei reach polarisation only $P = \mathcal{O}(0.01)$, even at low T & high B.
- Relaxation times (to equilib. P) become very long.
- \bullet \to Dynamic nuclear polarisation (DNP) is needed.
 - \rightarrow High magnetic field ($\mathcal{O}(1)$ T).
 - \rightarrow Microwave system.
 - \rightarrow Very low temperature ($\approx 0.3 \text{ K}$) & high cooling power ($\mathcal{O}(0.1) \text{ W}$).
- Fast 180° rotations of P, transverse P. \rightarrow Frozen spin mode.
 - \rightarrow Extremely low temperature (< 100 mK) & high cooling power ($\mathcal{O}(1)$ mW).
- \bullet Dilution cryostat can meet the cooling needs in both regimes.
- polarisation measurement → continuous-wave NMR
 - \rightarrow Precise thermometry for TE calibration at ≈ 1 K.

Polarised target: History



1992: SMC polarised target [SMC Col., NIMA 437 (1999) 23].

2000: target modified for COMPASS. [COMPASS Col., NIMA 577 (2007) 455]

2006: new large acceptance magnet. [F Gautheron, AIF Conf.Proc. 915 (2007) 961]

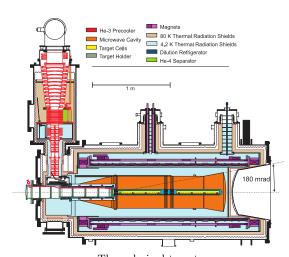
2014: magnet refurbished, upgrades for DY [J Koivuniemi et al., PoS PSTP2015 (2015) 015].

SMC polarised target

Polarised target: History

1992: SMC polarised target [SMC Col., NIMA 437 (1999) 23].

2000: target modified for


COMPASS.

[COMPASS Col., NIMA 577

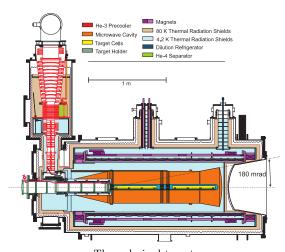
(2007) 455

2006: new large acceptance magnet. [F Gautheron, AIP

Conf. Proc. 915 (2007) 961]

The polarised target

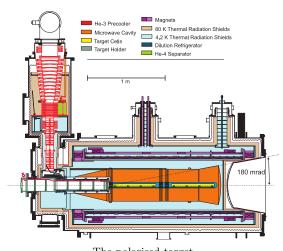
Polarised target: History


1992: SMC polarised target [SMC Col., NIMA 437 (1999) 23].

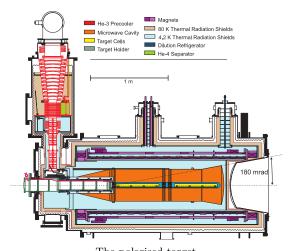
2000: target modified for COMPASS.
[COMPASS Col., NIMA 577

(2007) 455]

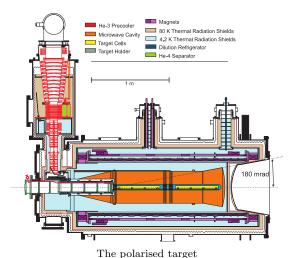
2006: new large acceptance magnet. [F Gautheron, AIP Conf.Proc. 915 (2007) 961]


2014: magnet refurbished, upgrades for DY [J Koivuniemi et al., PoS PSTP2015 (2015) 015].

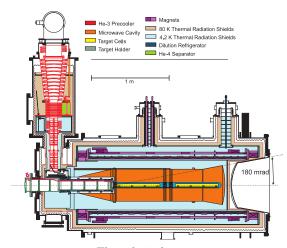
The polarised target


- Target holder, beam window.

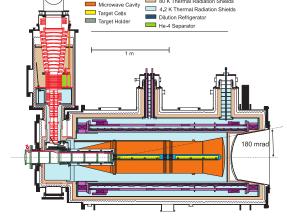
The polarised target


- Target holder, beam window.
- Target cells.
- Microwave cavity.
- SC magnets.
- Dilution refrigerator
- Mixing chamber.
 - ³He pumping line,
 - ³He precooler.
 - 4 Tr
 - 4He evaporator

The polarised target



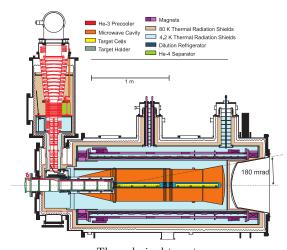
- Target holder, beam window.
- Microwave cavity.


- Target holder, beam window.
- Microwave cavity.
- SC magnets.

The polarised target

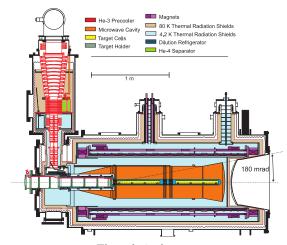
- Target holder, beam window.
- Microwave cavity.
- SC magnets.
- Dilution refrigerator

Magnets

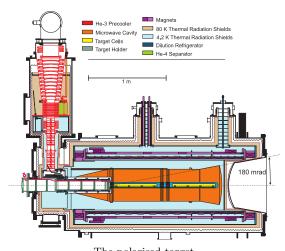

80 K Thermal Radiation Shields

He-3 Precooler

The polarised target

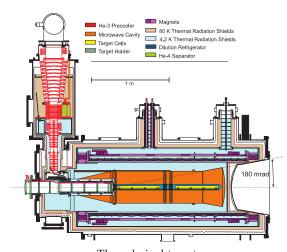

- Target holder, beam window.
- Microwave cavity.
- SC magnets.
- Dilution refrigerator
 - Mixing chamber.

The polarised target


- Target holder, beam window.
- Microwave cavity.
- SC magnets.
- Dilution refrigerator
 - Mixing chamber.
 - ³He evaporator (still),

The polarised target

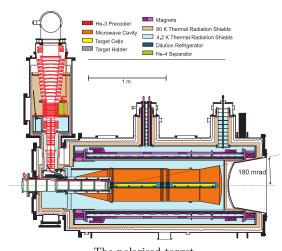
- Target holder, beam window.
- Microwave cavity.
- SC magnets.
- Dilution refrigerator
 - Mixing chamber.
 - ³He evaporator (still),
 - ³He pumping line,



The polarised target

- Target holder, beam window.
- Microwave cavity.
- SC magnets.
- Dilution refrigerator
 - Mixing chamber.
 - ³He evaporator (still),
 - ³He pumping line,

 - ³He precooler,

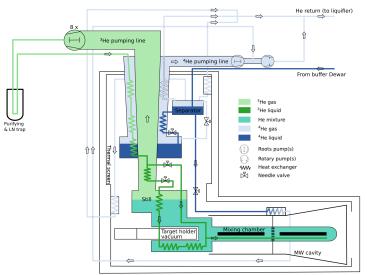


The polarised target

- Target holder, beam window.
- Microwave cavity.
- SC magnets.
- Dilution refrigerator
 - Mixing chamber.
 - ³He evaporator (still),
 - ³He pumping line,
 - ³He precooler,
 - ⁴He evaporator.

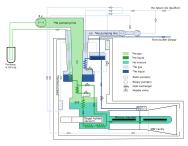
The polarised target

Outline



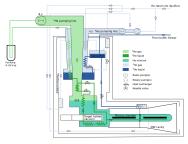
- The collaboration
- 2 Drell-Yan programme
- 3 Polarised target
- Polarised target dilution cryostat
- O Polarised target magnet
- 6 Conclusion of the part 1

Polarised target dilution cryostat: Scheme



Simplified dilution cryostat scheme.

Polarised target dilution cryostat: Parameters


- Large mixing chamber (l = 1.6 m, d = 7 cm).
- \bullet He 3/4 mixture (10–15% of $^3{\rm He}),$ in total about 9 000 l (gas).
- ³He circulation: 8 Pfeiffer roots blowers.
- Additional ⁴He for thermal rad. screens and evaporator: 15–20 l/h.
- DNP mode: cooling power up to 350 mW at ≈ 300 mK (³He flow 100 mmol/s).
- Frozen-spin mode: cooling power ≈ 1 mW at ≈ 65 mK (³He flow 30 mmol/s, typical condition with μ beam).
- With π beam: 80–90 mK in the dilution chamber.

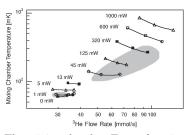
Simplified dilution cryostat scheme.

- Large mixing chamber (l = 1.6 m, d = 7 cm).
- He 3/4 mixture (10–15% of 3 He), in total about 9 000 l (gas).
- ³He circulation: 8 Pfeiffer roots blowers.
- Additional ⁴He for thermal rad. screens and evaporator: 15–20 l/h.
- DNP mode: cooling power up to 350 mW at ≈ 300 mK (3 He flow 100 mmol/s).
- Frozen-spin mode: cooling power ≈ 1 mW at ≈ 65 mK (³He flow 30 mmol/s, typical condition with μ beam).
- With π beam: 80–90 mK in the dilution chamber.

Simplified dilution cryostat scheme.

- Large mixing chamber (l = 1.6 m, d = 7 cm).
- He 3/4 mixture (10–15% of 3 He), in total about 9 000 l (gas).
- ³He circulation: 8 Pfeiffer roots blowers.
- Additional ⁴He for thermal rad. screens and evaporator: 15–20 l/h.
- DNP mode: cooling power up to 350 mW at ≈ 300 mK (3 He flow 100 mmol/s).
- Frozen-spin mode: cooling power ≈ 1 mW at ≈ 65 mK (³He flow 30 mmol/s, typical condition with μ beam).
- With π beam: 80–90 mK in the dilution chamber.

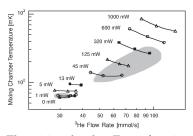
Simplified dilution cryostat scheme.



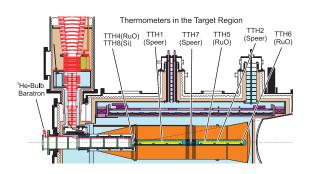
- Large mixing chamber (l = 1.6 m, d = 7 cm).
- \bullet He 3/4 mixture (10–15% of $^3{\rm He}),$ in total about 9 000 l (gas).
- ³He circulation: 8 Pfeiffer roots blowers.

• Additional ⁴He for thermal rad. screens and

- evaporator: 15–20 l/h.

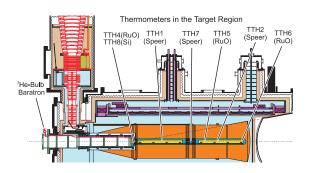

 DNP mode: cooling power up to 350 mV
- DNP mode: cooling power up to 350 mW at ≈ 300 mK (³He flow 100 mmol/s).
- Frozen-spin mode: cooling power ≈ 1 mW at ≈ 65 mK (³He flow 30 mmol/s, typical condition with μ beam).
- With π beam: 80–90 mK in the dilution chamber.

The mixing chamber T as a function of the $^3\mathrm{He}$ flow [N. Doshita, et al., NIM A526 (2004) 138].


- Large mixing chamber (l = 1.6 m, d = 7 cm).
- He 3/4 mixture (10–15% of 3 He), in total about 9 000 l (gas).
- ³He circulation: 8 Pfeiffer roots blowers.
- Additional ⁴He for thermal rad. screens and evaporator: 15–20 l/h.
- DNP mode: cooling power up to 350 mW at ≈ 300 mK (³He flow 100 mmol/s).
- Frozen-spin mode: cooling power ≈ 1 mW at ≈ 65 mK (³He flow 30 mmol/s, typical condition with μ beam).
- With π beam: 80–90 mK in the dilution chamber.

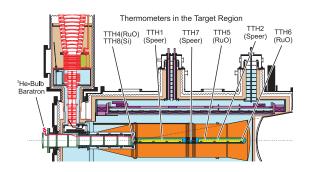
The mixing chamber T as a function of the $^3\mathrm{He}$ flow [N. Doshita, et~al., NIM A526 (2004) 138].

Polarised target dilution cryostat: Thermometry



TE calibration: Precise measurement at $\approx 1 \text{ K} - {}^{3}\text{He vapour pressure}$.

Polarised target dilution cryostat: Thermometry



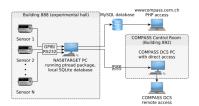
TE calibration: Precise measurement at $\approx 1 \text{ K} - {}^{3}\text{He vapour pressure}$.

Dilution chamber: Resistive thermometers read by Picowatt AVS-46/47 res. bridges.

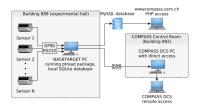
Polarised target dilution cryostat: Thermometry

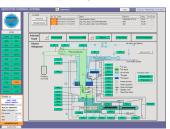
TE calibration: Precise measurement at $\approx 1 \text{ K} - {}^{3}\text{He vapour pressure}$.

Dilution chamber: Resistive thermometers read by Picowatt AVS-46/47 res. bridges.


Above 4 K: Diode thermometers read by Lakeshore LS218 temp. monitor.

- New pumping lines welded.
- New water-cooled heat exchangers for ³He pumping line.
- New remote monitoring system ptread:


- New pumping lines welded.
- New water-cooled heat exchangers for ³He pumping line.
- New remote monitoring system ptread:
 - · Linux-based, modular.
 - Instruments (AVS, Lakeshore etc.) connected by GPIB or RS232 interfaces.
 - Connected to the standard COMPASS DCS via DIM service [http://dim.web.cern.ch].


ptread package scheme.

- New pumping lines welded.
- New water-cooled heat exchangers for ³He pumping line.
- New remote monitoring system ptread:
 - Linux-based, modular.
 - Instruments (AVS, Lakeshore etc.) connected by GPIB or RS232 interfaces.
 - Connected to the standard COMPASS DCS via DIM service [http://dim.web.cern.ch].

ptread package scheme.

COMPASS DCS.

2013 - cryostat inspection.

Outline

- The collaboration
- 2 Drell-Yan programme
- Polarised target
- Polarised target dilution cryostat
- 5 Polarised target magnet
- 6 Conclusion of the part 1

Dimensions: •

• l = 2350 mm,

• internal d = 638 mm.

SC solenoid:

• 2.5 T field,

• 16 shim coils,

• 10^{-5} homogeneity in target cells.

SC dipol

• 0.63 T field,

Operation

 Coils can be ramped up/down in given sequences

 \bullet \rightarrow field on/off/rotation.

Cooling:

• Liquid He.

• Cryocooler for thermal radiation shields (since 2014, cooling power 60 W at 60 K).

• LHe consumption (2015): 15 1/day.

DR and magnet.

Dimensions: •

• l = 2350 mm,

• internal d = 638 mm.

SC solenoid:

• 2.5 T field,

• 16 shim coils,

• 10^{-5} homogeneity in target cells.

SC dipole

• 0.63 T field,

Operation

 Coils can be ramped up/down in given sequences
 (pre-programmed scripts)

ullet \rightarrow field on/off/rotation.

Cooling:

• Liquid He.

• Cryocooler for thermal radiation shields (since 2014, cooling power 60 W at 60 K).

• LHe consumption (2015): 15 l/day.

DR and magnet.

Dimensions: • l = 2350 mm,

• internal d = 638 mm.

SC solenoid: • 2.5 T field,

• 16 shim coils,

• 10⁻⁵ homogeneity in target cells.

SC dipole: • 0.63 T field,

• Coils can be ramped up/down in

ullet \rightarrow field on/off/rotation.

• Liquid He.

• Cryocooler for thermal radiation

• LHe consumption (2015):

DR and magnet.

Dimensions:

• l = 2350 mm,

• internal d = 638 mm.

SC solenoid:

• 2.5 T field,

• 16 shim coils,

• 10⁻⁵ homogeneity in target cells.

SC dipole:

• 0.63 T field,

Operation:

• Coils can be ramped up/down in given sequences (pre-programmed scripts)

 $\bullet \to \text{field on/off/rotation}.$

• Liquid He.

• Cryocooler for thermal radiation

• LHe consumption (2015):

DR and magnet.

PT prepared for operation.

Dimensions:

• l = 2350 mm,

• internal d = 638 mm.

SC solenoid:

• 2.5 T field,

• 16 shim coils,

• 10⁻⁵ homogeneity in target cells.

SC dipole:

• 0.63 T field,

Operation:

• Coils can be ramped up/down in given sequences (pre-programmed scripts)

 $\bullet \to \text{field on/off/rotation}.$

Cooling:

• Liquid He.

• Cryocooler for thermal radiation shields (since 2014, cooling power 60 W at 60 K).

• LHe consumption (2015): 15 l/day.

DR and magnet.

PT prepared for operation.

- Done by CERN magnet group.
- Cryogenics rebuilt,
- cryocooler added \rightarrow lower He consumption.
- New temp. monitoring,
 - 9 Pt1000 sensors,
 - 9 CERN bridges for He temps.
- New power converters.
- Shorts on trim coils repaired.
- Quench protection improved.
- New monitoring and control
 - CERN UNICOS system.
 - DIP server \rightarrow COMPASS DCS.

- Done by CERN magnet group.
- Cryogenics rebuilt,
- \bullet cryocooler added \to lower He consumption.
- New temp. monitoring,
 - 9 Pt1000 sensors,
 - 9 CERN bridges for He temps.
- New power converters.
- Shorts on trim coils repaired.
- Quench protection improved.
- New monitoring and control
 - CERN UNICOS system
 - \bullet DIP server \to COMPASS DCS.

Magnet control racks.

- Done by CERN magnet group.
- Cryogenics rebuilt,
- cryocooler added \rightarrow lower He consumption.
- New temp. monitoring,
 - 9 Pt1000 sensors,
 - 9 CERN bridges for He temps.
- New power converters.
- Shorts on trim coils repaired.
- Quench protection improved.
- New monitoring and control
 - - DIP server \rightarrow COMPASS DCS.

Magnet control racks.

- Done by CERN magnet group.
- Cryogenics rebuilt,
- \bullet cryocooler added \to lower He consumption.
- New temp. monitoring,
 - 9 Pt1000 sensors,
 - 9 CERN bridges for He temps.
- New power converters.
- Shorts on trim coils repaired.
- Quench protection improved.
- New monitoring and control
 - CERN UNICOS system,
 - DIP server \rightarrow COMPASS DCS.

Magnet control racks.

Outline

- 1 The collaboration
- 2 Drell-Yan programme
- Polarised target
- Polarised target dilution cryostat
- Polarised target magnet
- 6 Conclusion of the part I

Conclusion of the part I

- COMPASS has a wide physics programme,
- including nucleon spin structure studies in SIDIS and (recently) Drell—Yan reactions.
- It utilizes a large solid-state polarized target system.
 - SC magnet (2.5 T solenoid and 0.6 T dipole)
 - dilution cryostat (350 mW at 300 mK, 1 mW at 0.65 mK),
 - both magnet and cryostat were refurbished before 2015 run.
 - About 30 mK higher T observed in the dilution chamber with the π beam (as compared to μ).

Thank you for your attention! Questions?

Genki Nukazuka continues with part II (DNP, NMR, polarisation in 2015).

Conclusion of the part I

- COMPASS has a wide physics programme,
- including nucleon spin structure studies in SIDIS and (recently) Drell-Yan reactions.
- It utilizes a large solid-state polarized target system.
 - SC magnet (2.5 T solenoid and 0.6 T dipole),
 - \bullet dilution cryostat (350 mW at 300 mK, 1 mW at 0.65 mK),
 - both magnet and cryostat were refurbished before 2015 run,
 - About 30 mK higher T observed in the dilution chamber with the π beam (as compared to μ).

Thank you for your attention!

Questions?

Genki Nukazuka continues with part II (DNP, NMR, polarisation in 2015).

Conclusion of the part I

- COMPASS has a wide physics programme,
- including nucleon spin structure studies in SIDIS and (recently) Drell-Yan reactions.
- It utilizes a large solid-state polarized target system.
 - SC magnet (2.5 T solenoid and 0.6 T dipole),
 - \bullet dilution cryostat (350 mW at 300 mK, 1 mW at 0.65 mK),
 - both magnet and cryostat were refurbished before 2015 run,
 - About 30 mK higher T observed in the dilution chamber with the π beam (as compared to μ).

Thank you for your attention! Questions?

Genki Nukazuka continues with part II (DNP, NMR, polarisation in 2015).