

- 1. COMPASS QCD facility
- 2. Beyond 2020 Workshop (March 2016)
- 3. Long term plans
 - RF separated beam
 - Spectroscopy
 - Drell-Yan
 - Exclusive measurements with muon and hadron beams
- 4. Shorter term plans
 - SIDIS
 - Drell-Yan
 - Astrophysics
- 5. Summary

COMPASS Spectrometer at SPS M2 beam line (CERN)

Universal and flexible apparatus. Most important features of the two-stage COMPASS Spectrometer:

- Muon, electron or hadron beams with the momentum range 20-250 GeV and intensities up to 10⁸ particles per second
- 2. Solid state polarised targets (NH₃ or ⁶LiD) as well as liquid hydrogen target and nuclear targets
- 3. Adv syst

11

~240 physicists (~60 PhD, ~25 Master&Diploma students), 12 countries + CERN, 24 institutions

1000 mm

COMPASS QCD facility at SPS M2 beam line (CERN) (secondary hadron and lepton beams)

Exotic state, chiral dynamics

Hadron Spectroscopy &

COMPASS-I 1997-2011

3D hadron structure (TMDs, **7** GPDs), spin decomposition

sed SIDIS

Polarised Drell-Yan

COMPASS-II 2012-2018

DVCS (GPDs) + unp. SIDIS

Beyond 2020 dedicated Workshop This week – regular annual COMPASS Workshop (IWHSS'16 Kloster Seeon)

COMPASS beyond 2020 Workshop

- 21 Mar 2016, 08:05 → 22 Mar 2016, 17:10 Europe/Zurich
- 222-R-001 (CERN)

Description The goal of the workshop is to explore hadron physics opportunities for fixed-target COMPASS-like experiments at CERN beyond 2020 (CERN Long Shutdown 2 2019-2020). The programme comprises

- Reviews of the various physics domains: TMDs, GPDs, FFs, spectroscopy, exotics, tests of ChPT, astrophysics

- Reviews of physics results expected in the next 10 years from major labs around the world

- Good attendance (>100 physicists), large interest
- 11 "outside" review talks Jefferson Lab, RHIC, Fermilab, KEK (Japan) BEPC II (IHEP, Beijing), NICA (JINR, Dubna), CERN (After, LHCb), GSI (Panda), J-PARC (Japan), EIC China;
- 7 COMPASS talks (chronol.) SIDIS, GPDs, Chiral Dynamics, astrophysics (dark matter), Drell-Yan, hadron spectroscopy;
- 2 "round-table"-like discussions on possible future with hadron and muon beams;
- Outcome of the Workshop:
 - RF Separated antiproton/kaon beam would provide a unique opportunity for future fixed target COMPASS-like program at CERN
 - Existing muon and hadron beam allows to extend current COMPASS program by doing unique or first class measurements of exclusive processes, SIDIS and Drell-Yan

COMP A S

RF separated antiproton/kaon beam

 $\Delta \Phi = 2\pi (L f / c) (\beta_1^{-1} - \beta_2^{-1}) \text{ with } \beta_1^{-1} - \beta_2^{-1} = (m_1^2 - m_2^2)/2p^2$

"Normal" h⁻ beam composition: ~97% (π) ~2.5%(K) ~0.5% (pbar)

Assumptions:

- 8 x 10⁷ antiprotons for 10¹³ ppp (10 seconds) (optimistic estimate by Lau Gatignon);
- we assume here 4 x 10¹³ protons.

Antiprotons RF separated beam: 3.2×10^7 /s - Gain is a factor of 50 compared to the standard h⁻ beam for Drell-Yan experiment (~1% of h⁻ beam 6x10⁷ /s dominated by π^-)

Using the same assumption for RF separated kaon beam, possible kaon beam intensity is 8 x 10⁶ /s - Gain is a factor of 80 compared to to the standard "spectroscopy" h⁻ beam

High intensity RF separated beam will provide unique opportunities for Hadron Spectroscopy and Drell-Yan physics

RF separated beam – Hadron spectroscopy (i) Light Meson Sector & COMPASS contribution

Good illustration or potential is a discov

100 to previous experiment Good illustration or our potential is a discovery of a new axial-vector meson $a_1(1420)$ in

exclusive events - factor 10 to

COMPASS

 $1^{++}0^{+} f_{0}(980)\pi P$ wave (PRL).

 3π data sample ~50x10⁶

[C. Adolph et al., COMPASS, PRL 115, 082001 (2015)]

It is shown that we have elaborated adequate methods to cope with huge statistics and produced nice results

RF separated beam – Hadron spectroscopy (ii) Light and Strange Meson Spectrum

RF separated kaon beam ~ 8 x 10⁶ /s, beam momentum ~100 GeV

What can we contribute as COMPASS?

- State-of-the-art high-resolution spectrometer with full PID
- Advanced analysis techniques being developed in the light-quark sector

Method to be used: Kaon beam diffraction scattering on LH₂ and thin nuclear targets

- Goal: ~10 larger data sample than existing worldwide what would make possible to have similar to pion diffraction wave set: 88 waves in 11 t['] bins;
- COMPASS could rewrite PDG tables for strange mesons
- Extend studies of chiral dynamics to strange sector

 $K^$ p $X^ \xi$ π^+ $\pi^$ p_{recoil}

No real competitors JParc - ~10⁵ /s, low momenta kaons JLab - ~10⁴ /s, K⁰ long beam, lower momenta

Unique opportunity

RF separated beam – Hadron spectroscopy (iii) Charmonium spectra

[V. Santoro, Hadron 2015]

-0.5

 $\cos \theta_{...}$

0.5

[LHCb, PRL 112, 222002 (2014)]

LHCb

100

LHCb

1.5

 $m^2_{K^*\pi^-}\,[GeV^2]$

[degrees]

-100

2.5

RF separated beam – Hadron spectroscopy (iv) Charmonium-like mesons

RF separated antiproton beam, beam momentum ~ 20 GeV

Running/planed Drell-Yan experiments, COMPASS (π^{-} beam on \mathbf{p}^{\uparrow}) – unique experiment

COMPASS

Experiment	Particles	Energy (GeV)	x _b or x _t	Luminosity (cm ⁻² s ⁻¹)		P _b or P _t (f)	rFOM [#]	Timeline
COMPASS (CERN)	π^{\pm} + p $^{\uparrow}$	190 GeV √s = 19	$x_t = 0.1 - 0.3$	2 x 10 ³³	0.14	P _t = 80% f = 0.22	1.0 x 10 ⁻³	2014-2015, 2018
PANDA (GSI)	pbar + p [↑]	15 GeV √s = 5.5	$x_t = 0.2 - 0.4$	2 x 10 ³²	0.07	P _t = 90% f = 0.22	1.1 x 10 ⁻⁴	>2025
AFTER	$\mathbf{p}^{\uparrow} + \mathbf{p}$	7 TeV √s = 120	x _b = 0.1 – 0.9	2 x 10 ³²	0.06	P _b = 100%?	2.3 x 10 -5	>2020
NICA (JINR)	$\mathbf{p}^{\uparrow} + \mathbf{p}$	collider √s = 26	$x_{b} = 0.1 - 0.8$	1 x 10 ³²	0.04	P _b = 70%	6.8 x 10 ⁻⁵	>2023
PHENIX/STAR (RHIC)	$\mathbf{p}^{\uparrow} + \mathbf{p}^{\uparrow}$	collider $\sqrt{s} = 510$	x _b = 0.05 - 0.1	2 x 10 ³²	0.08	P _b = 60%	1.0 x 10 ⁻³	>2018
fsPHENIX (RHIC)	$\mathbf{p}^{\uparrow} + \mathbf{p}^{\uparrow}$	\sqrt{s} = 200 \sqrt{s} = 510	$x_b = 0.1 - 0.5$ $x_b = 0.05 - 0.6$	8 x 10 ³¹ 6 x 10 ³²	0.08	P _b = 60% P _b = 50%	4.0 x 10 ⁻⁴ 2.1 x 10 ⁻³	>2021
SeaQuest (FNAL: E-906)	p + p	120 GeV √s = 15	$x_b = 0.35 - 0.9$ $x_t = 0.1 - 0.45$	3.4 x 10 ³⁵				2012 - 2017
Pol tgt DY [‡] (FNAL: E-1039)	p + p [↑]	120 GeV √s = 15	$x_t = 0.1 - 0.45$	4.4 x 10 ³⁵	0 – 0.2*	P _t = 85% f = 0.176	0.15	2018-2019
Pol beam DY [§] (FNAL: E-1027)	p [↑] + p	120 GeV √s = 15	x _b = 0.35 – 0.9	2 x 10 ³⁵	0.04	P _b = 60%	1	2020

^{*}8 cm NH₃ target / [§]L= 1 x 10³⁶ cm⁻² s⁻¹ (LH₂ tgt limited) / L= 2 x 10³⁵ cm⁻² s⁻¹ (10% of MI beam limited) *not constrained by SIDIS data / [#]rFOM = relative lumi * P² * f² wrt E-1027 (f=1 for pol p beams, f=0.22 for π^- beam on NH₃)

RF separated beam – Drell-Yan (i)

RF separated antiproton/kaon beam, the maximal possible beam intensity (very rough estimate) of \sim 3-4x10⁷ /s can be reached (antiprotons) and \sim 8x10⁶ /s (kaons)

Assuming flux of 1×10^7 /s for kaon/antiproton, background free high mass range $4 < M_{\mu\mu} < 9 \ GeV/c^2$ and 140 days of data taking with the efficiency of 2015 Drell-Yan Run.

	NH ₃	Al (7cm)	W	NA3	NA10	E537	E615
K^- beam	14,000	2,800	29,600	700			
\overline{p} beam	15,750	2,750	22,500			387	

The overall gain for RF separated beam compare to previous experiments is factor 50 to 100

RF separated beam – Drell-Yan (ii) kaon-induced DY

- Kaon-induced DY is the only source of information on kaon structure which is unknown
- Together with pion induced DY will represent the unique data set for unstable particle structure study
- Unpolarised case, possibility to use different nuclear targets targets (like LH₂, Al, W, Cu):
 - 1. Kaon structure function (PDFs)
 - 2. Nucleon strange quark structure
 - 3. Fundamental Lam-Tung relation for kaon
 - 4. Boer-Mulders TMDs (quark-spin quark-k_T correl.) for kaons
 - 5. EMC effects & flavour dependent EMC effects (kaons)

1.4

1.2

1.0

0.8

0.6 0.4

0.2

v:20

0.15 0.10

0.05

-0.00 -0.05

-0.10

-0.15

N23

0.4

0.3

0.2

0.1

 p_{τ} (GeV/c)

6. Kaon Distribution Amplitude, J/Ψ production mechanism

Collaboration, PLB 93, 354 (1980

No competitors, unique data

COMPASS K-W

0.2

0.15

0.10 0.05

?0.00

?0.05 ?0.10

?0.15

°N:S

0.4

0.3

0.2

0.1

+ + +

 X_1

.

RF separated beam - Drell-Yan (iii) antiproton-induced Drell-Yan

- Antiproton-induced polarised DY makes **TMD's extraction model independent**
- Allows to profit from good knowledge of proton PDFs (from SIDIS) and as alternative probe permits to test TMDs universality
- New data on all TMDs induced asymmetries in both High Mass and J/Ψ regions:
 - 1. Model independent Boer-Mulders (quark-spin quark-k_T correl.) extraction (CPT equiv.)
 - 2. Model independent Transversity extraction
 - 3. Lam-Tung relation for antiprotons (QCD effects)
 - Sivers asymmetry (nucleon-spin quark-k_T correlations) with no uncertainty from pion PDFs
 - 5. Sivers function for gluons (J/Ψ regions)
 - 6. Flavour separated TMDs extraction
 - 7. EMC effects & flavour dependent EMC effects

No competitors, unique data

Exclusive measurements using COMPASS Polarised Target

Generalised Parton Distributions (GPD) *E* and access to Orbital Angular Momentum Recoil detector to be inserted in the COMPASS PT magnet

 Muon beam, access to GPD E processes to be measured:

> ✓ DVCS (μp[↑] → μpγ) ✓ DVMP (μp[↑] → μρ(ω)γ)

> > Projections: → Competitors: No competitors in COMPASS kinematic range (small x_{Bj})

Figure 13: Expected statistical accuracy of $A_{CS,T}^{D,\sin(\phi-\phi_s)\cos\phi}$ as a function of -t, x_B and Q^2 from a measurement in 280 days, using a 160 GeV muon beam and ECAL1+ECAL2. Solid and open circles correspond to the simulations for the two hypothetical configurations of the target region (see text). Also shown is the asymmetry $A_{U,T}^{\sin(\phi-\phi_s)\cos\phi}$ measured at HERMES [41] with its statistical errors.

• Hadron beam (π^{-} dominated), processes to be studied:

 $\sqrt[]{} \pi p^{\uparrow} \rightarrow \mu^{+} \mu^{-} p$ $\sqrt[]{} \pi p^{\uparrow} \rightarrow \mu^{+} \mu^{-} \pi p$

> Projections & feasibility: under investigation Competitors: No competitors in our kinematical domain

Oleg Denisov

OMPAS

SIDIS – transversely polarised Deuteron Target (⁶LiD) Transversity/Sivers PDF extraction

- TMD PDFs and Transversity $h_1(x)$ are flavour dependent.
- Flavour separation \rightarrow data on both proton (NH₃) and deuteron (⁶LiD) transversely polarised targets.
- Proton data set is factor of 4 compare to deuteron (see error bars for transversity $h_1(x)$ in the plot below) -It is logical to increase the deuteron data set (so far the only data sets available are COMPASS (⁶LiD) and CLAS (³He) targets).

Competitors: - No competitors in our kinematic range, Jlab will start by 2020

Fig. 6: $xh_1^u(x)$ (left) and $xh_1^d(x)$ (right) from the 'two hadron' asymmetries of 2010 proton and of 2002-2004 deuteron data (from[30]). The curves show the transversity PDFs obtained from a fit of Collins asymmetries [29]

COMPASS pion-induced Drell-Yan (LH₂, ⁶LiD)

 The same arguments as for SIDIS TMDs flavour separated extraction valid as well for our Drell-Yan data, both TMDs and "normal" pion PDFs.

- World largest Drell-Yan data set on NH₃ (first ever polarised data)

In order to perform f.s. – must to have data on
⁶LiD, will be first ever data sample (projections are shown)

- Pion PDFs flavour separation

- Shorter exposition on unpolarised LH₂ target is required to test fundamental Lam-Tung relation and to extract Boer-Mulders TMD using "clean" (no nuclear effects) LH target – complementary to SIDIS.

Unique, no competitors

Oleg Denisov

Astrophysics – search for dark matter, contribution from COMPASS

- New AMS(2) data – the antiparticle flux is well known now (few % pres.);

- Two type of processes contribute – SM interactions (proton on the ISM with the production for example antiprotons in the f.s.) and contribution from dark particle – antiparticle annihilation;

- In order to detect a possible excess in the antiparticles flux a good knowledge of inclusive cross sections of p-He interaction with antiparticles in the f.s. is a must, currently the typical precision is of 30-50%.

Thus the primary goal is to measure inclusive antiproton (positron, gamma) production cross section in a wide kinematical range with the precision <10%. **Compared to NA49 COMPASS have factor ~1000** as luminosity. COMPASS:

- Proton beam energy range 50-250 GeV
- Secondary particles identification:
 - Antiprotons (RICH)
 - Positrons and Gamma (ECals)

- "Beyond 2020" workshop at CERN (March 20-22) → success, strong interest in the hadron physics community
- RF separated antiproton/kaon beam will provide unique opportunity for hadron spectroscopy and Drell-Yan physics
- Existing muon and hadron beams allows to extend current COMPASS program

Thank you!