Transverse spin structure: from experiment to theory

Andrea Bressan University of Trieste and INFN

IWHSS2016 - INTERNATIONAL WORKSHOP ON HADRON STRUCTURE AND SPECTROSCOPY 5-7 SEPTEMBER 2016, KLOSTER SEEON, GERMANY There is no doubt that QCD is the right theory for hadron physics However, many fundamental questions...

- How does the nucleon mass emerge from the light quarks dynamically?
- Why quarks and gluons are confined inside the nucleon?
- How do the fundamental nuclear forces arise from QCD?

We don't have a comprehensive picture of the nucleon structure as we don't have a QCD nucleon wave function

THE 3D VIEW OF THE PROTON (from TMDs and GPDs) ALLOWS NEW INSIGHTs TO QCD

Transverse structure of the Nucleon

Confined parton motion in a hadron

- Scattering with a large momentum transfer
 - Momentum scale of the hard probe $Q \gg 1/R \sim \Lambda_{QCD} \sim 1$ fm
 - Combined motion $\sim 1/R$ is too week to be sensitive to the hard probe
 - Collinear factorization integrated into PDFs
- Scattering with multiple momentum scales observed
 - Two-scale observables (such as SIDIS, low p_T Drell-Yan) $Q \gg q_T \sim {}^1\!/_R \sim \Lambda_{QCD} \sim 1 \text{ fm}$
 - "Hard" scale Q localizes the probe to see the quark or gluon d.o.f.
 - "Soft" scale q_T could be sensitive to the confined motion
 - TMD factorization: the confined motion is encoded into TMDs

The orbital motion:

- Orbital motion of quarks and gluons must be significant inside the nucleons!
 - This is in contrast to the naive non-relativistic quark model, which was the motivation to introduce the color quantum number!
- Orbital motion shall generate direct orbital Angular Momentum which must contribute to the spin of the proton
- Orbital motion can also give rise to a range of interesting physical effects (Single Spin Asymmetries)

Structure of proton

• Transverse Momentum Dependent parton distribution (TMDs)

Longitudinal motion only

Longitudinal + transverse motion

• Sivers function: an asymmetric parton distribution in a transversely polarized nucleon (k_{\perp} correlated with the spin of the nucleon)

$$f_{q/h\uparrow}(x,k_{\perp},\vec{S}) = f_{q/h}(x,k_{\perp}) - \frac{1}{M}f_{1T}^{\perp q}(x,k_{\perp})\vec{S}\cdot\left(\hat{p}\times\vec{k}_{\perp}\right)$$

- Boer-Mulders function: an asymmetric parton distribution in an unpolarised nucleon (k_{\perp} correlated with the spin of the quark)

$$f_{q/h\uparrow}(x,k_{\perp},\vec{s}) = f_{q/h}(x,k_{\perp}) - \frac{1}{M}h_{1T}^{\perp q}(x,k_{\perp})\vec{s}\cdot\left(\hat{p}\times\vec{k}_{\perp}\right)$$

New ways to look at partons

- We not only need to know that partons have longitudinal momentum, but must have transverse degrees of freedom as well
- Partons in transverse coordinate space
 - Generalized parton distributions (GPDs)
- Partons in transverse momentum space
 - Transverse-momentum distributions (TMDs)
- Both? Wigner distributions!

• Wigner distributions (Belitsky, Ji, Yuan)

Factorization in QCD – SIDIS

- Parton model LO QCD
 - Parton distribution function in a hadron
 - parton-to-hadron fragmentation function

• QCD interaction and leading power regions:

- Collinear regions: k || P and k || h
- Soft regions: $k^{\mu} \rightarrow 0$

Factorization in QCD – SIDIS

Perturbative definition – in terms of TMD factorization:

TMD Fragmentation

TMD Distribution

Soft Factor

Low P_{hT} – TMD factorization:

 $\sigma(Q, P_{hT}, x, z) = \widehat{H}(Q) \otimes \phi_f(x, k_\perp) \otimes D_{f \to h}(z, p_\perp) \otimes S(k_{s\perp}) + \sigma\left[\frac{P_{hT}}{O}\right]$

• High P_{hT} – Collinear factorization:

$$\sigma(Q, P_{hT}, x, z) = \widehat{H}(Q, P_{hT}, \alpha_s) \otimes \phi_f(x) \otimes D_{f \to h}(z) + \sigma \left| \frac{1}{P_{hT}}, \frac{1}{Q} \right|$$

• P_{hT} Integrated – Collinear factorization:

$$\sigma(Q, x, z) = \widehat{H}(Q, \alpha_s) \otimes \phi_f(x) \otimes D_{f \to h}(z) + \sigma \left[\frac{1}{Q}\right]$$

Kloster Seeon 9/1/2016

IWHSS2016

- Inclusive processes → collinear factorisation: one or less hadrons detected
- "More inclusive" processes → TMD factorisation: two or more hadrons in the initial or final state detected

- Collinear factorisation: longitudinal momenta of the patrons are intrinsic, transverse momenta can be created by perturbative radiation effects (parton showers)
- TMD factorisation: a unifying QCD-based framework with both mechanisms of the transverse-momentum creation taken into account: intrinsic (essentially non-perturbative) and perturbative radiation

Wilson Lines

- Parton Distribution Functions must be:
 - Gauge-invariant
 - Universal
 - Renormalizable
- Wilson lines are crucial for everything! BUT introduce pathdependence:
 - **Path-dependence**: the structure of the Wilson lines is process-dependent; universality (and/or factorisation) may be broken
 - Factorisation scale is arbitrary: transition from one scale to another (different experiments have different characteristic scales) by means of evolution equations; Wilson lines complicate renormalizability

Ordinary PDFs

- The Bj limit $(Q^2, \nu \to \infty \text{ with } x = Q^2/2M\nu \text{ fixed})$ selects scattering on a single parton in the target. $\sigma_{DIS}(\ell N \to \ell' X)$ determines the ordinary PDF $f_{q/N}(x) = \frac{1}{8\pi} \int dr^- e^{-iMxr^-/2} \langle N(P) | \bar{q}(r^-)\gamma^+ W[r^-, 0]q(q) | N(P) \rangle |_{r^+ \sim 1/\nu \to 0} |_{r_\perp \sim 1/Q \to 0}$
- The Wilson line W arises from scattering of the struck quark in the target. It does not cancel between the amplitude and (amplitude)* since the photon vertices are separated by r^- ... In the light-cone gauge, $A^+ = 0$, the Wilson link reduces to unity and can be omitted

•
$$W[r^{-}, 0] \equiv P \exp\left[\frac{ig}{2}\int_{0}^{r^{-}} dx^{-}A^{+}(x^{-})\right]$$

TMD PDFs

• When we consider the TMD we take into account also the transverse motion of the quark k_{\perp} The field-theoretical expression is quite complicated due to the structure of the gauge link, which now connects two space-time points with a transverse separation

$$f_{q/N}(x, k_{\perp}) = \frac{1}{8\pi} \int dr^{-} \frac{dr_{\perp}^{2}}{(2\pi)^{2}} e^{-iMxr^{-}/2 + ik_{\perp} \cdot r_{\perp}}$$

 $\langle N(P)|\bar{q}(r^{-},r_{\perp})\gamma^{+}W[r^{-},r_{\perp};0]q(0)|N(P)\rangle|_{r^{+}\sim 1/\nu\to 0}$

The Wilson line W is no longer on the light-cone axis and may introduce a process dependence

Parity and Time reversal invariance \Rightarrow

$$\left(f_{1Tq}^{\perp}\right)_{DY} = -\left(f_{1Tq}^{\perp}\right)_{SIDIS}$$

Most critical test to TMD approach to SSA

Energy dependence of TMDs

- Experiments operate in very different kinematic ranges
 - Typical hard scale Q is different: $Q \sim 1-5$ GeV in SIDIS, $Q \sim 4-90$ GeV for DY, $Q \sim 3-10$ GeV in e^+e^-
 - Also center-of-mass energy is different
- Such energy dependence (evolution) has to be taken into account for any reliable QCD description/prediction
- Both collinear PDFs and TMDs depend on the energy scale Q at which they are measured, such dependences are governed by QCD evolution equations

Collinear PDFs F(x,Q) TMDs $F(x, k_{\perp}; Q)$

QCD evolution: meaning

- Evolution = include important perturbative corrections
 - DGLAP evolution of collinear PDFs: what it does is to resum the so-called single logarithms in the higher order perturbative calculations

• TMD factorization works in the situation where there are two observed momenta in the process, $Q \gg q_T$: resums the so-called double logarithms in the higher order perturbative corrections

Kloster Seeon 9/1/2016

Main difference between collinear and TMD evolution

• Collinear PDFs (DGLAP): the evolution kernel is purely perturbative

$$\frac{\partial f_a(x,Q)}{\partial \ln Q^2} = \sum_b \int_z^1 \frac{dz}{z} P_{a \leftarrow b}\left(\frac{x}{z}, Q\right) f_b(z,Q)$$

$$f(x, Q_i) \rightarrow R_{\text{Coll}}(x, Q_i, Q_f) \rightarrow f(x, Q_f)$$

- TMDs: the evolution kernels are not. They contain nonperturbative component, which makes the evolution much more complicated
 - k_{\perp} can run into non-perturbative region

$$F(x, k_{\perp}, Q_i) \longrightarrow R_{\text{TMD}}(x, k_{\perp}, Q_i, Q_f) \longrightarrow F(x, k_{\perp}, Q_f)$$

 $F(x, k_{\perp}; Q_i)$

• We have a TMD above measured at a scale Q. It is easier to deal in the Fourier transformed space

$$F(x,b;Q_i) = \int d^2 \mathbf{k}_{\perp} e^{-i,k_{\perp}\cdot b} F(x,k_{\perp};Q_i)$$

 In the small b region, one can then compute the evolution to this TMDs, which goes like

$$F(x,b;Q_f) = F(x,b;Q_i) \exp\left\{-\int_{Q_i}^{Q_f} \frac{d\mu}{d} \left(A \ln \frac{Q_f^2}{\mu^2} + B\right)\right\} \left(\frac{Q_f^2}{Q_i^2}\right)^{-\int_{c/b}^{Q_i} \frac{d\mu}{d}A}$$

TMD evolution:

- Polarized scattering data comes as ratio: e.g. $A_{UT}^{\sin(\phi_h \phi_s)} = F_{UT}^{\sin(\phi_h \phi_s)} / F_{UU}$
- Unpolarized data is very important to constrain/extract the key ingredient for the non-perturbative part

Effect of QCD evolution

TMD evolution

- High-energy DIS: rise of the proton structure function at small-x.
 As parton longitudinal momentum fractions x become small, the transverse degrees of freedom becomes increasingly important.
- The strong corrections at small-*x* come from multiple radiation of gluons over long intervals in rapidity, and are present in all higher orders of perturbation theory. TMD evolution provides an appropriate framework to resum such corrections.

Accessing TMD PDFs and FFs

- TMD factorization works in the domain where there are two observed momenta in the process, such as SIDIS, DY, e^+e^- . $Q \gg q_T$: Q is large to ensure the use of pQCD, q_T is much smaller such that it is sensitive to parton's transverse momentum
- SIDIS off polarized p, d, n targets

HERMES
COMPASS
$$\sigma^{\ell p \to \ell' h X} \sim q(x) \otimes \hat{\sigma}^{\gamma q \to q} \otimes D_q^h(z)$$

JLab
future: **eN colliders?**

polarised Drell-Yan

 $e^+e^- \rightarrow h_1h_2$

COMPASS RHIC $\sigma^{hp \to \mu\mu} \sim \bar{q}_h(x_1) \otimes q_p(x_2) \otimes \hat{\sigma}^{\bar{q}q \to \mu\mu}(\hat{s})$ FNAL future: **FAIR, JPark, NICA**

BaBar *Belle Bes III*

$$\sigma^{e^+e^- \to h_1 h_2} \sim \hat{\sigma}^{\ell\ell \to \bar{q}q}(\hat{s}) \otimes D_q^{h_1}(z_1) \otimes D_q^{h_2}(z_2)$$

SIDIS Experiment must:

- Have large acceptances on all the relevant variables x, Q^2, z, P_{hT}, ϕ
- Use different targets (p, d, n) and identify hadrons to allow flavour separation
- Be ad different energies for to cover PDFs from the valence region down to small-x
- Large luminosity to allow multidimensional results needed by the complexity of TMDs

• The polarized lepton-nucleon collider will be a mandatory tool to reach the level of ordinary PDF

Kinematic coverage

SIDIS access to TMDs

- NOT directly accessible
- Their extractions require measurements of x-sections and asymmetries in a large kinematic domain of x, Q², z, P_{hT}

IWHSS2016

Measurements with the target transversely polarized:

Year	Obs	
2005	$A^h_{Siv,d}$, $A^h_{Col,d}$	First ⁶ LiD data
2006	$A^h_{Siv,d}$, $A^h_{Col,d}$	Full ⁶ LiD statistics
2009	$A_{Siv,d}^{\pi^{\pm},K^{\pm},K^{0}_{S}}$, $A_{Col,d}^{\pi^{\pm},K^{\pm},K^{0}_{S}}$	Full ⁶ LiD statistics
2010	$A^h_{Siv,p}$, $A^h_{Col,p}$	2007 NH ₃ data
2012	$A_{UT,d}^{\sin\phi_{RS}}$, $A_{UT,p}^{\sin\phi_{RS}}$	Full ⁶ LiD
2012	$A^h_{Siv,p}$, $A^h_{Col,p}$	Full NH ₃ statistics
2012	$A_{UT,d}^{sin(\phi_{\rho}-\phi_{S})}, A_{UT,p}^{sin(\phi_{\rho}-\phi_{S})}$	Exclusive $ ho^0$
2013	$A_{UT,d}^{\left(\phi_{ ho},\phi_{S} ight)},A_{UT,p}^{\left(\phi_{ ho},\phi_{S} ight)}$	Exclusive ρ^0 , all asyms.
2014	$A_{UT,d}^{\sin\phi_{RS}}, A_{UT,p}^{\sin\phi_{RS}}$	Full ⁶ LiD and NH ₃
2014	$A_{Siv,d}^{\pi^{\pm},K^{\pm},K^{0}_{S}}$, $A_{Col,d}^{\pi^{\pm},K^{\pm},K^{0}_{S}}$	Full NH ₃ statistics
2015	Interplay $A_{UT,p}^{sin\phi_{RS}}$ vs $A_{Col,p}^{h}$	Full NH ₃ statistics

Year	Obs	
2013	$dn^h/(dN^\mu dzdp_T^2)$	Unpolarized multiplicities on d, 2004
2014	$A_{UU,d}^{\cos \phi_h}$, $A_{UU,d}^{\cos 2\phi_h}$, $A_{LU,d}^{\sin \phi_h}$	2004, part
2016	$dn^{\pi}/(dN^{\mu}dz)$	Unpolarized multiplicities on d, 2006
2016	$dn^h/(dN^\mu dzdp_T^2)$	Unpolarized multiplicities on d, 2006
2016	$dn^K/(dN^\mu dz)$	Unpolarized multiplicities on d, 2006

Multiplicity distributions

• Unpolarized hadron multiplicity distributions are the basic material for studying the mechanisms of P_{hT} generation and the applicability of TMD factorization.

• It is important to have differential distributions in kinematic variables x, Q^2 , z besides P_{hT}

• Not only low P_{hT} . Tails at $P_{hT} > 1$ GeV carries important perturbative & non-perturbative information

Importance of unpolarized SIDIS

- The cross-section dependence from p_T^h results from:
 - intrinsic k_{\perp} of the quarks
 - p_{\perp} generated in the quark fragmentation
 - A Gaussian ansatz for k_{\perp} and p_{\perp} leads to
 - $\langle p_{T,h}^2 \rangle = z^2 \langle k_\perp^2 \rangle + \langle p_\perp^2 \rangle$
- The azimuthal modulations in the unpolarized cross-section's comes from:
 - Intrinsic k_{\perp} of the quarks
 - The Boer-Mulders PDF
- Difficult measurements were one has to correct for the apparatus acceptance
- COMPASS and HERMES have
 - results on 6LiD (~d) and d
 - No measurements on p since on NH_3 ($\sim p$) nuclear effects may be important
- \Rightarrow COMPASS-II, measurements on LH₂ in parallel with DVCS

Kloster Seeon 9/1/2016

IWHSS2016

proton

P

 k_{\perp}

Importance of unpolarized SIDIS

Mean values

 $\langle p_T^2 \rangle ~({\rm GeV/c})^2$

(GeV/c)²

Kloster Seeon 9/1/2016

IWHSS2016

TMD evolution works: multiplicity distribution in SIDIS

Echevarria, Idilbi, Kang, Vitev

TMD evolution works: Drell-Yan and W/Z production

• Comparison with DY, W/Z pt distribution

- Works for SIDIS, DY, and W/Z in all the energy ranges
- Make predictions for future JLab 12, COMPASS, Fermilab, RHIC experiments

The asymmetries

• The asymmetries are:

•
$$A_{U(L),T}^{w(\phi_h,\phi_S)}(x,z,p_T;Q^2) = \frac{F_{U(L),T}^{w(\phi_h,\phi_S)}}{F_{UU,T}+\varepsilon F_{UU,L}}$$

• When we measure on 1D

•
$$A_{U(L),T}^{w(\phi_h,\phi_S)}(x) = \frac{\int_{Q_{min}}^{Q_{max}^2} dQ^2 \int_{z_{min}}^{z_{max}} dz \int_{p_{T,min}}^{p_{T,max}} d^2 \vec{p}_T F_{U(L),T}^{w(\phi_h,\phi_S)}}{\int_{Q_{min}}^{Q_{max}^2} dQ^2 \int_{z_{min}}^{z_{max}} dz \int_{p_{T,min}}^{p_{T,max}} d^2 \vec{p}_T (F_{UU,T} + \varepsilon F_{UU,L})}$$

Boer-Mulders in $\cos 2\phi$

Boer-Mulders in $\cos 2\phi$

charged pions (and kaons), HERMES and COMPASS

The phase spaces of the two processes overlap at COMPASS
 → Consistent extraction of TMD DPFs in the same region

Sivers in DY range

Sivers asymmetry on proton. Multidimensional

Extraction of TSAs with a Multi-D $(x: Q^2: z: p_T)$ approach

Kloster Seeon 9/1/2016

IWHSS201

Sivers asymmetry on deuteron and proton for Gluons

COMPASS

Kloster Seeon 9/1/2016

IWHSS2016

 $q=u_v, d_v, q_{sea}$ quark with spin parallel to the nucleon spin in a transversely polarised nucleon

- probes the relativistic nature of quark dynamics
- no contribution from the gluons \rightarrow simple Q² evolution

- first moments: tensor charge...... $\delta q \equiv \int dx \left[h_1^q(x) h_1^{\overline{q}}(x) \right]$ sum rule for transverse spin in PM... $\frac{1}{2} = \frac{1}{2} \sum h_1^q + L_q + L_g$
- is chiral-odd: decouples from inclusive DIS

Bakker, Leader, Trueman, PRD 70 (04)

Collins asymmetry on proton

IWHSS2016

Collins asymmetry on proton. Multidimensional

COMPASS

Extraction of TSAs with a Multi-D $(x: Q^2: z: p_T)$ approach

One dense plot out of many

Kloster Seeon 9/1/2016

Transversity from our data

- Point-to-point extraction [Physical Review D 91, 014034 (2015)]
- Only COMPASS measured TSA on deuteron

ERRORS ON h_1^d ARE A FACTOR 4 LARGER THAT THE ONES ON h_1^u

From Collins asymmetries to transversity

• Following Physical Review D 91, 014034 (2015), in the valence region

$$xh_{1}^{u} = \frac{1}{5} \frac{1}{\tilde{a}_{P}^{h}(1-\tilde{\alpha})} \left[\left(xf_{p}^{+}A_{p}^{+} - xf_{p}^{-}A_{p}^{-} \right) + \frac{1}{3} \left(xf_{d}^{+}A_{d}^{+} - xf_{d}^{-}A_{d}^{-} \right) \right]$$

$$xh_1^d = \frac{1}{5} \frac{1}{\tilde{a}_P^h(1-\tilde{\alpha})} \left[\frac{4}{3} \left(xf_d^+ A_d^+ - xf_d^- A_d^- \right) - \left(xf_p^+ A_p^+ - xf_p^- A_p^- \right) \right]$$

With \tilde{a}_P^h and $\tilde{\alpha}$ constants

New deuteron data

• 1 full year (same as 2010).

THIS IS A MEASUREMENT THAT WILL IMPACT OUR KNOWLEDGE,

Far Future perspective

spin ~ angular momentum

Thank you

Ennanna

#

M

FEEGH

The CM Energy vs Luminosity Landscape

Hadron correlations

Interplay between Collins and IFF asymmetries

common hadron sample for Collins and 2h analysis

 $\phi_R - \phi_{2h}$

Kloster Seeon 9/1/2016

IWHSS2016

ratio of the integrals compatible with $4/\pi$

 $h^{+}h^{-}(\Delta\phi)$

 $\sigma_{II}(\Delta\phi$

 $\sigma_{2C}^{h^+h^-}(\Delta\phi)$

 $\sigma_{II}(\Delta\phi)$

Huge azimuthal ϕ modulation on unpolrised target measured by EMC in 1987

 $d\sigma^{\ell p \to \ell' h X} = \sum_{q} f_q(x, Q^2) \otimes d\sigma^{\ell q \to \ell' q} \otimes D_q^h(z, Q^2)$ where, in collinear PM $d\sigma^{\ell q \to \ell' q} = \hat{s}^2 + \hat{u}^2 = x[1 + (1 - y)^2]$, i.e. no ϕ_h dependence. Taking into account the parton transverse momentum in the kinematics leads to:

$$\hat{s} = sx \left[1 - \frac{2k_{\perp}}{Q} \sqrt{1 - y} \cos \phi_h \right] + \sigma \left(\frac{k_{\perp}^2}{Q} \right) \ \hat{u} = sx(1 - y) \left[1 - \frac{2k_{\perp}}{Q\sqrt{1 - y}} \cos \phi_h \right] + \sigma \left(\frac{k_{\perp}^2}{Q} \right)$$
Resulting in the $\cos \phi_h$ and $\cos 2\phi_h$ modulations observed in the azimuthal distributions

Kloster Seeon 9/1/2016

2h asymmetries in $p^{\uparrow}p \longrightarrow \pi\pi X$

 $d\sigma_{UT} \propto \sin \phi_{RS} f_1 \otimes h_1 \otimes \hat{\sigma}^{qq \to qq} \otimes H_{1,q}^{\measuredangle}(z, M)$