Exclusive meson production at COMPASS

Paweł Sznajder

National Centre for Nuclear Research, Warsaw

on behalf of the COMPASS Collaboration

- · Introduction
- · COMPASS experiment
- · Transverse target spin asymmetries for incoherent exclusive ρ^0 and ω production
- · Projections for COMPASS-II
- · Summary and outlook

Hard Exclusive Meson Production $y * p \rightarrow V p'$

large Q² and W, -t/Q² << 1 factorization strictly proven only for longitudinal γ^*

Chiral-even GPDs

helicity of parton unchanged

$$H^{q,g}(x,\xi,t)$$
 $\widetilde{H}^{q,g}(x,\xi,t)$

$$E^{q,g}(x,\xi,t)$$

 $\widetilde{E}^{q,g}(x,\xi,t)$

Chiral-odd GPDs

helicity of parton changed (not probed by DVCS)

$$H_T^q(x,\xi,t)$$

 $\widetilde{H}_T^q(x,\xi,t)$

$$E_T^q(x,\xi,t)$$
 $\widetilde{E}_T^q(x,\xi,t)$

Flavour separation for GPDs example:

$$E_{\rho^0} = \frac{1}{\sqrt{2}} \left(\frac{2}{3} E^u + \frac{1}{3} E^d + \frac{3}{8} E^g \right)$$

$$E_{\omega} = \frac{1}{\sqrt{2}} \left(\frac{2}{3} E^u - \frac{1}{3} E^d + \frac{1}{8} E^g \right)$$

$$E_{\varphi} = -\frac{1}{3} E^s - \frac{1}{8} E^g$$

- contribution from gluons at the same order of $\alpha_{_{\rm S}}$ as from quarks

GPD formalism – highlights

Nucleon tomography:

3D parton distribution function:

$$q(x, \mathbf{b}) = (2\pi)^{-2} \int d^2 \Delta e^{-i\mathbf{b}\cdot\Delta} H^q(x, 0, t = -\Delta^2)$$

where:

b: impact parameter

Ji's sum rule (access to total angular momentum):

$$\int_{-1}^{1} dx \, x [H^{q}(x,\xi,0) + E^{q}(x,\xi,0)] = 2J^{q}$$

Transversity:

$$H_T^q(x,0,0) = h_1^q(x)$$

Cross section formula for exclusive meson production

$$\left[\frac{\alpha_{\text{em}}}{8\pi^{3}} \frac{y^{2}}{1-\varepsilon} \frac{1-x_{B}}{x_{B}} \frac{1}{Q^{2}}\right]^{-1} \frac{d\sigma}{dx_{B} dQ^{2} d\phi d\phi_{S}}$$

$$= \frac{1}{2} \left(\sigma_{++}^{++} + \sigma_{++}^{--}\right) + \varepsilon \sigma_{00}^{++} - \varepsilon \cos(2\phi) \operatorname{Re} \sigma_{+-}^{++} - \sqrt{\varepsilon(1+\varepsilon)} \cos \phi \operatorname{Re} \left(\sigma_{+0}^{++} + \sigma_{+0}^{--}\right)$$

$$- P_{\ell} \sqrt{\varepsilon(1-\varepsilon)} \sin \phi \operatorname{Im} \left(\sigma_{+0}^{++} + \sigma_{+0}^{--}\right)$$

$$- S_{L} \left[\varepsilon \sin(2\phi) \operatorname{Im} \sigma_{+-}^{++} + \sqrt{\varepsilon(1+\varepsilon)} \sin \phi \operatorname{Im} \left(\sigma_{+0}^{++} - \sigma_{+0}^{--}\right)\right]$$

$$+ S_{L} P_{\ell} \left[\sqrt{1-\varepsilon^{2}} \frac{1}{2} \left(\sigma_{++}^{++} - \sigma_{++}^{--}\right) - \sqrt{\varepsilon(1-\varepsilon)} \cos \phi \operatorname{Re} \left(\sigma_{+0}^{++} - \sigma_{+0}^{--}\right)\right]$$

$$+ S_T P_{\ell} \left[\sqrt{1 - \varepsilon^2} \cos(\phi - \phi_S) \operatorname{Re} \sigma_{++}^{+-} \right.$$
$$- \sqrt{\varepsilon(1 - \varepsilon)} \cos \phi_S \operatorname{Re} \sigma_{+0}^{+-} - \sqrt{\varepsilon(1 - \varepsilon)} \cos(2\phi - \phi_S) \operatorname{Re} \sigma_{+0}^{-+} \right].$$

 σ_{mn}^{ij} : helicity-dependent photoabsorption cross sections and interference terms

$$\sigma_{\it mn}^{ij}\!\left(x_{\it B},Q^2,t
ight) \propto \sum \left(M_{\it m}^i
ight)^* M_{\it n}^j$$

 M_m^i : amplitude for subprocess $\gamma^* p \to V p'$ with photon helicity m and target proton helicity i

$$\epsilon = \frac{1 - y - \frac{1}{4}y^2 \gamma^2}{1 - y + \frac{1}{2}y^2 + \frac{1}{4}\gamma^2}$$

$$\gamma = 2x_{Bi}M_P/Q$$

Paweł Sznajder DIS 2015 5

Access to GPDs through exclusive meson production

5 transverse target spin asymmetries and 3 transverse target double spin asymmetries

$$A_{UT}^{\sin(\varphi-\varphi_s)} = -\frac{\operatorname{Im}\left(\sigma_{++}^{+-} + \epsilon \sigma_{00}^{+-}\right)}{\sigma_0}$$

$$A_{UT}^{\sin(2\varphi-\varphi_s)} = -\frac{\operatorname{Im}\sigma_{+0}^{-+}}{\sigma_0}$$

$$A_{UT}^{\sin\varphi_s} = -\frac{\operatorname{Im}\sigma_{+0}^{+-}}{\sigma_0}$$

$$A_{UT}^{\sin(3\varphi-\varphi_s)} = -\frac{\operatorname{Im}\sigma_{+-}^{+-}}{\sigma_0}$$

$$A_{LT}^{\cos(\varphi-\varphi_s)} = \frac{\operatorname{Re} \sigma_{++}^{+-}}{\sigma_0}$$

$$A_{LT}^{\cos(2\varphi-\varphi_s)} = -\frac{\operatorname{Re} \sigma_{+0}^{-+}}{\sigma_0}$$

$$A_{LT}^{\cos\varphi_s} = -\frac{\operatorname{Re} \sigma_{+0}^{+-}}{\sigma_0}$$

 $\begin{array}{ccc} & \operatorname{Im} \sigma_{+-}^{+-} \\ \text{unpolarised cross section} \end{array}$

$$\sigma_0 = \frac{1}{2} \left(\sigma_{++}^{++} + \sigma_{--}^{--} \right) + \epsilon \sigma_{00}^{++} = \sigma_L + \epsilon \sigma_T$$

- Effect known since early photoproduction experiments
- At COMPASS kinematics:
 - small for ρ^0 production
 - sizable for ω production
- Unnatural parity exchange process
 → impact on helicity-dependent observables
- Crucial for description of SDMEs for excl. ω production
 → Goloskokov and Kroll, Eur. Phys. J. A50 (2014) 9, 146
- Sign of $\pi\omega$ form factor not resolved from SDMEs data \rightarrow azimuthal asymmetries more sensitive

COMPASS experiment at CERN – setup with transversely polarized target

Transverse target spin asymmetry for incoherent exclusive ρ^0 production

Used data:

2007, 2010 (transversely polarised protons)

2003, 2004 (transversely polarised deuterons)

Topology of vertex:

only incoming and outgoing muon tracks only two hadron tracks of opposite charges

proton data

deuteron data

Kinematics domain:

- 1 $(GeV/c)^2 < Q^2 < 10 (GeV/c)^2$
- W > 5 GéV

- 0.1 < y < 0.9
- $0.003 < x_{Bi} < 0.35$

Transverse target spin asymmetry for incoherent exclusive ρ^0 production

Missing energy and energy of ρ^0 candidate

• Check if the proton is intact

$$E_{miss} = \frac{M_x^2 - M_p^2}{2M_p} \in (-2.5, 2.5) \text{ GeV}$$

 $E_{miss} = 0$ is the signature of exclusivity

• Check if $E\rho^0 > v_{min}$ (minimal energy of γ^* allowed by the kinematic cuts)

$$E_{0^{0}} > 15 \, GeV$$

Squared transverse momentum of ρ^0 candidate w.r.t. γ^*

To remove coherent production off target nuclei

$$0.05 < p_T^2 (GeV/c)^2$$
 for protons
 $0.1 < p_T^2 (GeV/c)^2$ for deuterons

To suppress non-exclusive background

$$p_T^2 < 0.5 (GeV/c)^2$$

Transverse target spin asymmetry for incoherent exclusive ω production

Used data:

2010 (transversely polarised protons)

Topology of vertex:

only incoming and outgoing muon tracks only two hadron tracks of opposite charges only two clusters in ECALs timely correlated with vertex and not associated to any charged particle

Kinematics domain:

- 1 $(GeV/c)^2 < Q^2 < 10 (GeV/c)^2$
- W > 5 GeV

- 0.1 < y < 0.9
- $0.003 < x_{Bi} < 0.35$

Transverse target spin asymmetry for incoherent exclusive ω production

Missing energy and energy of $\boldsymbol{\omega}$ candidate

Check if the proton is intact

$$E_{miss} = \frac{M_x^2 - M_p^2}{2M_p} \in (-3, 3) \ GeV$$

 $E_{\it miss} = 0$ is the signature of exclusivity

• Check if $E_{\omega} > v_{min}$ (minimal energy of γ^* allowed by the kinematic cuts)

$$E_{\omega} > 15 \, GeV$$

Squared transverse momentum of ω candidate w.r.t. γ^*

To remove coherent production off target nuclei

$$0.05 < p_T^2 (GeV/c)^2$$

To suppress non-exclusive background

$$p_T^2 < 0.5 (GeV/c)^2$$

Extraction of asymmetries

- ρ^0 analysis
 - 1D (deuteron) and 2D (proton) binned maximum likelihood estimator with subtraction of background in (ϕ, ϕ_s) bins
- ω analysis
 - Unbinned maximum likelihood estimator with simultaneous fit of signal and background asymmetries

Background rejection:

For each target cell and polarization state

shape of semi-inclusive background from MC (LEPTO with COMPASS tuning + simulation of spectrometer response + reconstruction as for real data)

MC weighted using ratio between real data and MC for wrong charge combination sample ($h^+h^+\gamma\gamma + h^-h^-\gamma\gamma$)

$$w(E_{miss}) = \frac{N_{RD}^{h+h+\gamma\gamma}(E_{miss}) + N_{RD}^{h-h-\gamma\gamma}(E_{miss})}{N_{MC}^{h+h+\gamma\gamma}(E_{miss}) + N_{MC}^{h-h-\gamma\gamma}(E_{miss})}$$

Normalization of MC to the real data using two component fit Gaussian function (signal) + shape from MC (bkg)

Goloskokov and Kroll (EPJC 59 (2009) 809)

- "handbag model"
 - GPDs constrained by CTEQ6 parametrization and nucleon form factors
- power corrections due to transverse quarks momenta
- predictions both for $\gamma^*_{\ \ \ }$ and $\gamma^*_{\ \ \ }$
- $A_{UT}^{\sin(\phi-\phi s)}$ for transversely polarised protons and deuterons small
- for proton data in agreement with HERMES results
 COMPASS results with statistical errors improved by factor 3 and extended kinematic range
- for deuteron data the first measurement
- reasonable agreement with predictions of the GPD model of Goloskokov Kroll

Transverse target spin asymmetry for incoherent exclusive ρ^{\parallel} production

→ PLB 731 (2014) 19

- Improved method of extraction (2D)
- 5 single spin asymmetries and 3 double spin asymmetries for transversely polarized proton target

$$\langle x_B \rangle \approx 0.039$$

 $\langle Q^2 \rangle \approx 2.0 \left[GeV/c \right]^2$
 $\langle p_T^2 \rangle \approx 0.18 \left[GeV/c \right]^2$

Single spin asymmetries

Transverse target spin asymmetry for incoherent exclusive ρ^{\parallel} production

→ PLB 731 (2014) 19

- Improved method of extraction (2D)
- 5 single spin asymmetries and 3 double spin asymmetries for transversely polarized proton target

Double spin asymmetries

$$\langle x_B \rangle \approx 0.039$$

$$\langle Q^2 \rangle \approx 2.0 \; [GeV/c]^2$$

$$\langle p_T^2 \rangle \approx 0.18 \left| GeV/c \right|^2$$

Transverse target spin asymmetry for incoherent exclusive ρ^0 production

- All asymmetries small and compatible with predictions of GK model
- $A_{UT}^{\sin \varphi_s} = -0.019 \pm 0.008 \pm 0.003$
- Indication of H_T contribution \rightarrow relation with transitivity at forward limit: $H_T(x, 0, 0) = h_1(x)$

Paweł Sznajder DIS 2015 17

Transverse target spin asymmetry for incoherent exclusive ω production

$Q^2=2.2 \text{ GeV}^2$ $x_{Bj} = 0.049$ $p_T^2 = 0.17 \text{ GeV}^2$ W=7.1 GeV

New result → to be published

- Unbinned maximum likelihood method
- 5 single spin asymmetries and 3 double spin asymmetries for transversely polarized proton target

Transverse target spin asymmetry for incoherent exclusive ω production

New result → to be published

GK model predictions private communication

- positive πω form factor

no pion pole

- negative $\pi\omega$ form factor

Future GPD program at COMPASS-II - projections

Study of exclusive meson production will be continued at COMPASS-II

- 2012 pilot + 2016, 2017 with unpolarized LH target and RPD
- > 2017 with polarized target and RPD (*subject of addendum to the proposal*)

Measurement of t-slope for exclusive ρ^0 production sensitive to transverse size of nucleon – meson system

- Q² and v parametrization of cross section from NMC data normalized to Goloskokov and Kroll predictions
- 160 GeV muon beam
- global efficiency ε = 10%
- L = 1.2 nb⁻¹ (2 years of data taking)

$$\frac{d\sigma}{dt} \sim \exp(-b|t|)$$

$$b(x_{Bj}) \approx \frac{1}{2} \langle r_{\perp}^{2}(x_{Bj}) \rangle$$

→ more in:

The GPD program at COMPASS II Philipp Karl Joerg Wednesday, WG6 session

Paweł Sznajder DIS 2015 20

- COMPASS is unique to probe GPDs due to covered kinematic region of intermediate x_{Bj} and availability of beams of two charges and polarizations
- Exclusive meson production → complementary measurement to DVCS, flavour separation for GPDs, sensitivity to chiral-odd GPDs
- · Transverse target spin asymmetries sensitive to
 - GPDs E (→ orbital angular momentum)
 - GPDs H_T (→ transversity)
 - pion pole (→ production mechanism)
 - can be used to constrain GPD models
 - results for ρ^0 and ω can be used to distinguish between GPDs for u and d quarks
- GPD program is continued at COMPASS-II