COMPASS results on g₁ and quark fragmentation functions

Fabienne KUNNE CEA /IRFU Saclay, France

On behalf of the COMPASS Collaboration

- Longitudinal spin structure function
 - g₁^p at 200 GeV
 - NLO QCD fit of g₁ world data
 - Test of Bjorken sum rule
- Quark fragmentation functions from SIDIS π and K

Longitudinal spin asymmetry measurements at COMPASS

Year 2002-2006	Pol.Target d (⁶ LiD)	Pol. μ beam 160 GeV	Status PLB 612 (2005) 154 PLB 647 (2007) 8 PLB 647 (2007) 330 (low x, low Q ²) PLB 660 (2008) 458 (SIDIS) PLB 680 (2009) 171 (SIDIS)
2007	p (NH ₃)	160 GeV	PLB 690 (2010) 240 PLB 693 (2010) 227 (SIDIS)
2011	p (NH ₃)	200 GeV	to be published in PLB

Goal of 200 GeV proton data:

improve precision at low x, access slightly higher Q²:

- Enlarge x-Q² coverage for QCD fits (ΔG, ΔΣ)
- Improve precision of the integral of g_1^p ($\Delta\Sigma$)
- Improve precision on semi-inclusive data at low x (Δu, Δd)
- Balance proton and deuteron statistics

COMPASS at CERN

Fixed target 160-200 GeV muon and 190 GeV hadron beams from CERN SPS

> **ECal HCal**

μ filter

 \rightarrow Multipurpose setup

Polarized muon beam & polarized target: d, p

Hadron beam π / K / p & LH_2 or nuclei

Meson spectroscopy π , K polarisabilities

dipole2

μ filter

Polarized target

- NH₃ material
- Dilution (15 ± 0.3) %
- Polarisation (80 ± 3)%
- Dynamic Nuclear Polarization
- Superconducting solenoid 2.5T

- 3 cells with opposite polarizations Nice balance of acceptance from the 2 spin states
- Reversal of polarization by:
 - Adiabatic rotation of solenoid field
 - Different microwave settings
 - \rightarrow 4 measurements
- \rightarrow Minimize systematics

Measurement of A₁^p and g₁^p

DIS events, Q²>1(GeV/c)²

D: depolarization factor

A₁^p (Q²) at various <x>

to be published in PLB

World data on g₁ ^p and g₁^d

proton

deuteron

 g_1 data as will be used in global QCD fits for extraction of $\Delta q_f(x)$ and $\Delta G(x)$

$$\frac{d g_1}{d \log(Q^2)} \propto -\Delta g(x, Q^2)$$

Fit to proton, neutron and deuteron world data

• Assume functional forms for $\Delta\Sigma$, ΔG and Δq^{NS} at a reference $Q_0^2 = 1 (GeV/c)^2$

e.g.:
$$\Delta q_{Si}(x|Q_0^2) = \eta_s x^{\alpha_s} (1-x)^{\beta_s} (1+\gamma_s x) / N_s$$

- Assume SU₃
- Use DGLAP equations
- Fit world data

495 points with W>10 GeV138 are from COMPASS, 11 free parameters.

COMPASS NLO pQCD fit of g₁ world data

- Quark spin contribution : $0.26 < \Delta\Sigma < 0.36$ at Q²=3 (GeV/c)² Largest uncertainty comes from the bad knowledge of functional forms. Result in fair agreement with other global fits
- Gluon spin contribution: ΔG not well constrained, even the sign, using DIS only Solution with ΔG >0 agrees with result from DSSV++ using RHIC pp data

g_1^p and g_1^d

- g₁^p positive at low x
- Lower x data needed for sensitivity to ΔG

Results for Bjorken sum rule from g₁ COMPASS data

Fundamental QCD sum rule, which relates proton and neutron spin structure functions g_1 . $\int_0^1 (g_1^p(x, Q^2) - g_1^n(x, Q^2)) dx = \frac{1}{6} | \frac{g_A}{g_V} | C_1^{NS}(Q^2)$

Better statistics and extended systematics studies compared to past

Note that experimental value increases from 1.22 to 1.25 when C_1^{NS} at NNLO

Summary for g₁^p

g₁^p: Measurement down to <x>= 0.0035 Statistical precision improved by factor of ~3 compared to SMC

NLO QCD fit of g₁ world data:

0.26< $\Delta\Sigma$ < 0.36 Uncertainty dominated by initial functional forms ΔG : Not constrained enough by DIS data alone

Bjorken sum rule from COMPASS p and d data: Verified to 8%

Part II

Quark fragmentation functions from π and K mutiplicities in SIDIS

Quark Fragmentation Functions (FF)

- Non perturbative objects
- Process independent
- Needed to access strange quark polarization Δs from polarized SIDIS.

strange quark FF = largest uncertainty in this extraction

Data from e⁺e⁻ and pp reactions, unsufficient for good flavour separation and at too high Q²

 \rightarrow extract FFs from COMPASS unpolarized SIDIS data

Quark FFs from SIDIS

Measurement of multiplicities of π , K, p in **SIDIS**

 $\mu^+ d \rightarrow \mu^+ h^{\pm} X$

Hadron multiplicitiy = mean number of hadrons *h* per DIS event

PDFs depend on *x*, while FFs depend on *z*

Data can be obtained in a fine binning in x, z, Q^2

→ Constitute an input to global NLO QCD analyses to extract quark FFs

Data analysis - hadron multiplicities

Isoscalar target ⁶LiD, 2006 data $Q^2 > 1 (GeV/c)^2$ 0.1 < y < 0.70.004 < x < 0.7

0.2< z < 0.85 Data cover 5< W < 17 GeV

Acceptance (x,y,z)

MC simulation, fine binning to avoid model dependence $\rightarrow A(z)$ in ~30 (*x-y*) bins Use *y* variable rather than Q², because of the *x*-Q² correlation

π^+ and π^- multiplicities vs z in (x,y) bins

- ~400 data points for π
- Strong z dependence
- Mπ⁺ ~ Mπ⁻

- Publication in preparation
- Some preliminary data already included in DSS++ NLO analysis
- All data included in COMPASS LO analysis (next slide)

NB- Also measured: p_T dependence and 2h multiplicities

Quark FFs into π , from COMPASS LO fits

Assume isospin and charge symmetry:

$$D_{\text{fav}}^{\pi \neq} = D_{u}^{\pi^{+}} = D_{d}^{\pi^{+}} = D_{d}^{\pi^{-}} = D_{u}^{\pi^{-}}$$

$$D_{\text{unf}}^{\pi \neq} = D_{d}^{\pi^{+}} = D_{u}^{\pi^{+}} = D_{u}^{\pi^{-}} = D_{d}^{\pi^{-}}$$
Assume also $D_{s}^{\pi^{+}} = D_{s}^{\pi^{-}} = D_{unf}^{\pi^{+}}$

Choose functional forms for FFs (z); use DGLAP. Fit π^+ and π^- multiplicities and extract the 2 independent FFs:

- As expected, $D_{fav} > D_{unf}$.
- Results in fair agreement with DSS and LSS NLO fits (not shown here)

Sum of *z* integrated multiplicities $\pi^+ + \pi^-$

For isoscalar target, simple dependence on FFs:

$$M^{\pi^++\pi^-} = D_{fav} + D_{unf} + rac{2S}{5Q+2S}(D_{unf} - D_{fav}) pprox D_{fav} + D_{unf}$$

~ no *x* dependence. Even if $x-Q^2$ are correlated, the Q^2 dependence of the *z* integrated multiplicity is very weak

Indeed, no x dependence observed in COMPASS nor in EMC data, at variance with HERMES data.

 $Q = u + \bar{u} + d + \bar{d},$ $S = s + \bar{s}.$

Ratio of z integrated multiplicities π^+ / π^-

Interesting because many systematic errors cancel in the ratio

 $\pi^+/\pi^$ h^{+}/h^{-} 1.8 $M \pi^+ / M \pi^ M^{h^+}/M^{h^-}$ COMPASS OMPASS ■HERMES _JLab E00-108 ■EMC 1.4 1.5 ļ 0 ∳ • 1.2 10^{-2} 10^{-1} 10^{-2} 10^{-1} Х

Pions:

- Good agreement COMPASS-HERMES.
- Jlab data higher, but at lower W

Hadrons: Good agreement COMPASS - EMC.

Х

K⁺ and K⁻ multiplicities vs z in (x,y) bins

0.8 0.2

0.2

0.4

0.6

0.8 0.2

0.4

0.6

~400 data points for K Strong z dependance MK⁺ > MK⁻

0.6

0.4

0.8

Z

0.8 0.2

0.6

0.4

curves: LO fits

Quark FFs into K, from COMPASS LO fits

Assuming isospin symmetry, 3 independent quark FFs: $D_{fav}^{K} = D_{unf}^{K} = D_{str}^{K}$ LO fit to COMPASS kaon multiplicities:

- As expected, $D_{fav} > D_{unf}$.
- D_{fav} and D_{unf} significantly larger than DSS and LSS NLO fits (which do not include these kaon data)
- Result for D_{str}^{K} not shown. Unstable, depends on choice of functional form

Sum of *z* integrated multiplicities K⁺ + K⁻

For an isoscalar target, the sum has a simple dependence on D_{str}^{K} :

Sum of z integrated multiplicities K⁺ + K⁻

Conclusion I. COMPASS data :

- significantly above HERMES one
- agree rather well with MC simulation LEPTO+JETSET (LUND)

Sum of z integrated multiplicities K⁺ + K⁻

Conclusion II: Hints on fragmentation functions:

from these data at high x: 0.70 from DSS analysis: 0.43

 D_Q^{K} COMPASS result >> DSS one, as seen in LO fit where D_{fav} and D_{unfav} both larger for COMPASS than DSS

Low x data, agree well with MC/Lund Do not show the rise expected from DSS from D_{str}/D_{fav} ratio \rightarrow Suggest much lower D_{str} than DSS

Ratio of z integrated multiplicities K⁺ / K⁻

Disagreement between HERMES and COMPASS for K^+ / K^- ratio of multiplicities, while there was agreement for pions.

Multiplicities from isoscalar target, for $h^+,h^-,\pi^+,\pi^-,K^+,K^$ in a fine binning of x,y,z; 5 < W < 17 GeV Important input to global QCD fit of FFs at NLO

Large discrepancies with HERMES in the sum of integrated multiplicities

Quark FF from LO fit of multiplicities D_{fav} & D_{unfav} (z,Q²) for pions and for kaons Promising results already at LO

In progress

Analyze data on H₂ target (2012) \rightarrow more input for flavor separation

Future

2016-2017 : large set of proton data (in parallel to GPD program: μ beam, H₂ target & upgraded RICH detector).

Systematic errors on A₁

- Multiplicative
- Additive

$$A_1^{1\gamma} = \frac{1}{fDP_BP_T}A^{raw} - \left(A_1^{RC} + \mathcal{O}(\frac{x}{Q}A_2) + \mathcal{O}(A_{False})\right)$$

Total of systematics always smaller than statistical error. Dominant contributions:

- conservative limit put on possible false asymmetries (not seen)
- beam polarization at medium x

Syst. uncertainties						
	Deuteron	Proton 07	Proton 11			
Beam polarisation	5%					
Target polarisation	5%	2%	3.5%			
Depolarisation factor	2%	2%	2%			
Dilution factor	2%	1%	2%			
Combined(target, dep., dil.)	6%	3.6%				

NLO QCD fit

Figure 10: Illustration of the randomisation procedure. The results of 1,000 fits to the replicas are shown together with the two red curves which represent the border of the interval at 68% of confidence

$Q^2 \left((\text{GeV}/c)^2 \right)$	$\Delta\Sigma$	ΔU	ΔD	ΔS
1	[0.27, 0.39]	[0.82, 0.86]	[-0.45, -0.41]	[-0.11, -0.06]
3	[0.26, 0.36]	[0.82, 0.85]	[-0.45, -0.42]	[-0.11, -0.08]
10	[0.26, 0.32]	[0.82, 0.84]	[-0.45, -0.43]	[-0.11, -0.09]

Range of solution for the first moment of polarised parton distributions from the QCD fits

Δ G/G from hadron prod. in DIS - (all-p_T)- PGF

New COMPASS results (better precision) Δ G/G extracted at LO, in 3 x-bins

π multiplicities -Systematic uncertainties

- Acceptance :
 > different sets of PDF in Lepto
 > different JETSET tunings
- RICH PID efficiency
 - pions : 1 % 3 %
 - kaons : 5 % 10 %
- Diff. ρ⁰ and φ correction
 - > 30 % theoretical uncertainty on HEPGEN cross-section
 - 12 % max uncertainty on correction
- Electron correction
 - > 25 % MC/data difference -> 50 % conservative syst. error

Pion FFs- Direct extraction and LO fit extraction

• • Direct extraction of the 2 FFs in one of the x-y bins.

LO Fit extraction of the 2 FFs.

Fit error bands: obtained using replica method

- Data with statistical error and uncorrelated syst. errors (dark band)
- Data with correlated systematic errors (light band)