Proton longitudinal spin structure-RHIC and COMPASS results

Fabienne KUNNE CEA/IRFU Saclay, France

Gluon helicity

PHENIX & STAR: pp \rightarrow jets, pp \rightarrow π^0 COMPASS g₁ QCD fit + Δ G direct measurements

- Quark helicity
- Others

Bjorken sum rule

Quark Fragmentation Functions

Nucleon spin

How is the nucleon spin distributed among its constituents?

Nucleon Spin
$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L$$

quark gluon orbital momentum

 $\Delta\Sigma$: sum over u, d, s, $\overline{u},\,\overline{d},\,\overline{s}$ can take any value: superposition of several states

$$\Delta q = q - q$$
Parton spin parallel or anti parallel to nucleon spin

Past:

Theory: QPM estimations, with relativistic effects $\Delta\Sigma \sim 0.6$

Experiment: "Spin crisis" in 1988, when EMC measured

$$a_0 = \Delta \Sigma = 0.12 \pm 0.17$$
MS scheme

Today:

Precise world data on polarized DIS $g_1 + SU_f(3)$ $a_0 = \Delta \Sigma \sim 0.3$

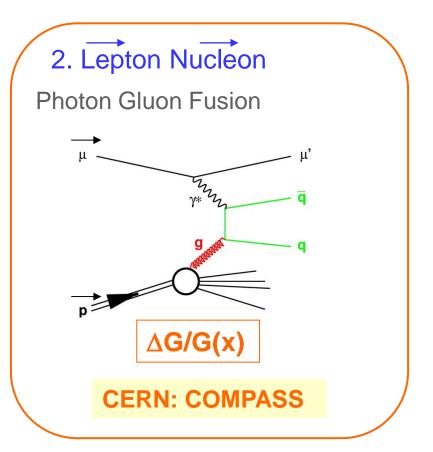
Confirmed by first results from Lattice QCD on $\Delta\Sigma_{u,d}$. (Results exist also on $L_{u,d}$)

Large experimental effort on ΔG measurement

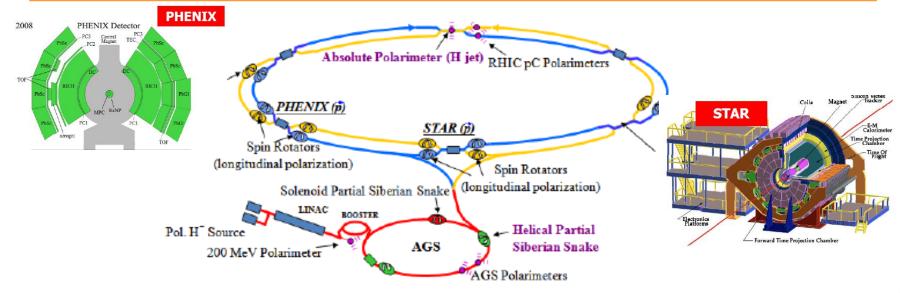
also because $a_0 = \Delta \Sigma - n_f (\alpha_s/2\pi) \Delta G$ (AB scheme)

Three ways to study gluon spin contribution ΔG

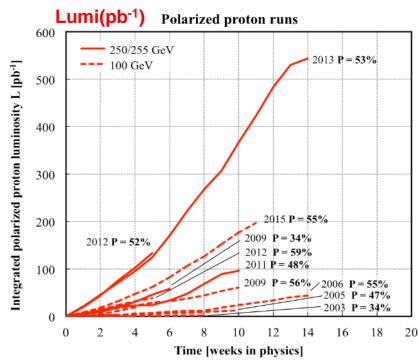
1. Proton Proton collisions


Gluon-Quark + Gluon-Gluon +...

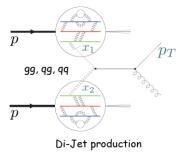
$$\frac{\Delta G}{G} \times \frac{\Delta q}{q} + \frac{\Delta G}{G} \times \frac{\Delta G}{G} + \dots$$


 $A_{LL}(p_T)$

RHIC: PHENIX & STAR


3. QCD Q^2 evolution of spin structure function $g_1(x,Q^2)$: Indirect determination assuming a functional form $\Delta G(x)$. Global fits include polarized DIS, SIDIS and pp data

1. \overrightarrow{p} \overrightarrow{p} collisions at RHIC


Longitudinal spin

- hadron production for <△G>
- W production for $\langle \Delta q \rangle$

1. $\overrightarrow{p} \overrightarrow{p}$ collisions at RHIC, channels for ΔG

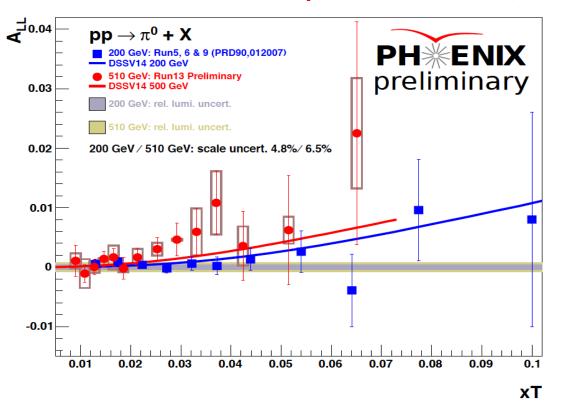
Various channels

3 processes contribute gg, qg, qq

More abundant channels

$$p\; p \to \pi^0\; X$$

PHENIX


$$p p \rightarrow jet X$$

STAR

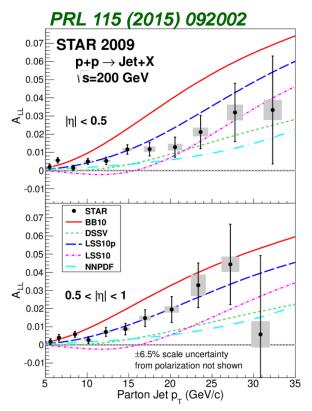
RHIC- PHENIX ΔG from π^0 production

 $p \mapsto \pi^0 + X$ Measure double spin asymmetry $A_{LL}(p_T)$ Compare data to global fits with a given $\Delta G(x)$ parameterization

earlier data 200 GeV & prelim. 2013 data $\sqrt{s} = 510$ GeV

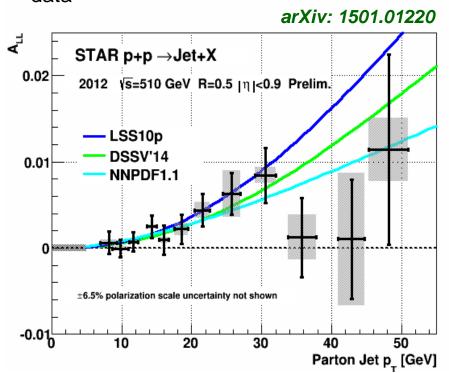
curves: **DSSV14**, which includes 2009 data

Significant non-zero A_{LL} (ΔG) observed x range extended to $x \sim 0.01$


arXiv: 1501.01220

RHIC- STAR AG from jet production

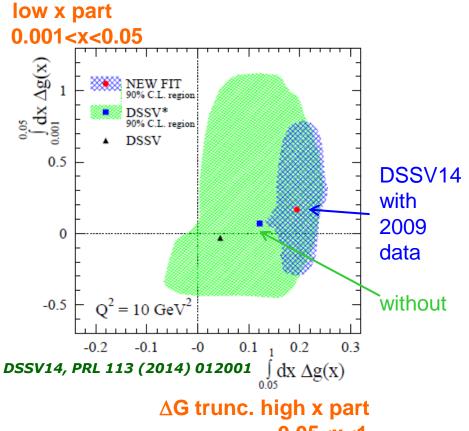
$$\overleftarrow{p} \stackrel{\rightleftharpoons}{\overrightarrow{p}} \rightarrow \text{jet} + X$$


2009 data at $\sqrt{s} = 200 \text{ GeV}$

- A_{IL} >0 for large p_T , indicate ΔG >0
- agree with LSS10p (ΔG >0)

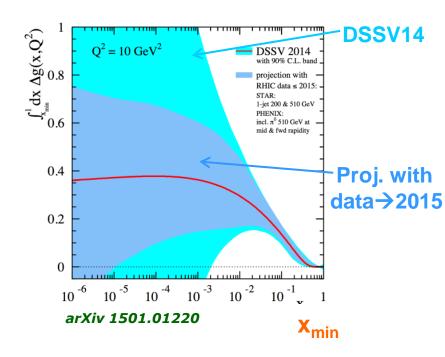
Prelim. 2012 data, $\sqrt{s} = 510 \text{ GeV}$

- agree with 2009 data
- LSS10p and DSSV14 which includes 2009 data



Large impact of RHIC data on ΔG from QCD fits

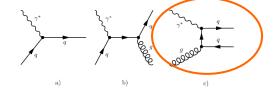
Significantly positive ΔG in measured range:


$$\int_{0.05}^{1} \Delta g(x) dx \simeq 0.20$$

Low-x vs high-x contributions to ΔG :

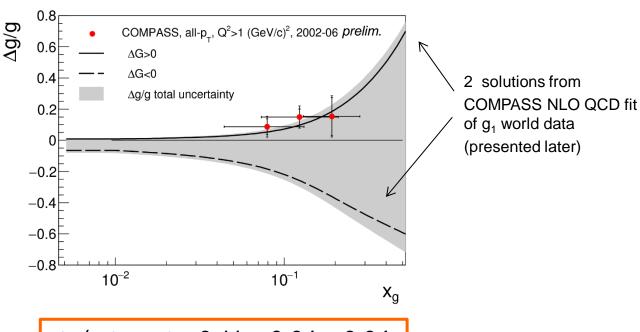
0.05 < x < 1

Running ΔG from x_{min} to 1


Need data at small x

F. Kunne - 8

2.a Δ G/G from hadron prod. in DIS (Q²>1(GeV/c)²)

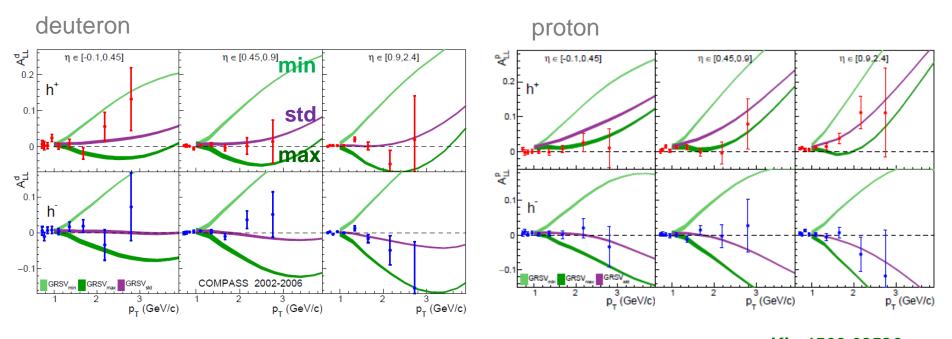

New COMPASS result 'all-p_T' - PGF

$$\overrightarrow{\mu} \stackrel{\Longleftrightarrow}{\overrightarrow{p}} \rightarrow h + h + X$$

Photon Gluon Fusion

 $Q^2>1(GeV/c)^2$ 3 x-bins

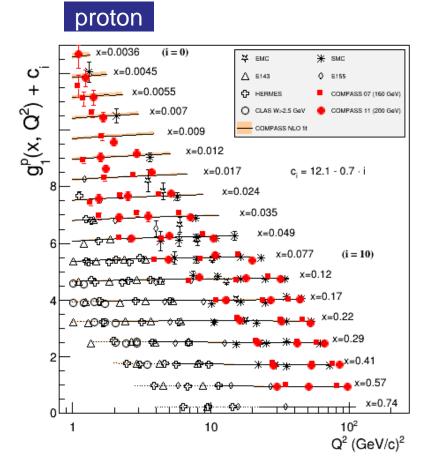
$$\Delta g/g (x=0.1) = 0.11 \pm 0.04 \pm 0.04$$

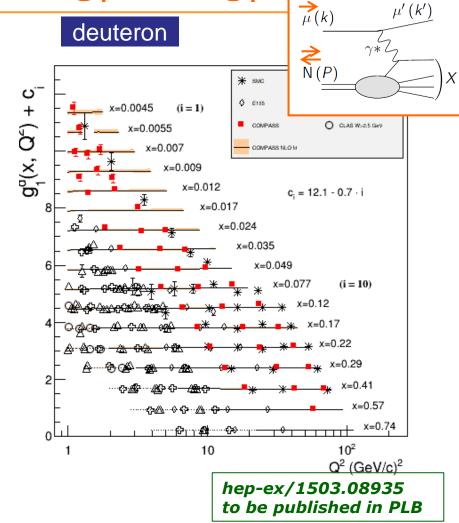

- COMPASS DIS data indicate ∆G >0 at x ~0.1
- caveat: extraction at LO only

2.b COMPASS ∆G from A_{II} (pT) low Q² data

$$\overrightarrow{\mu} \stackrel{\longleftarrow}{\overrightarrow{p}} \rightarrow h + X$$

New COMPASS result, $Q^2 < 0.1(GeV/c)^2$

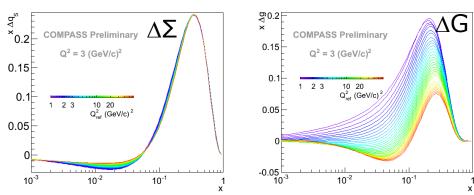

- quasi-real photoproduction of single hadrons, $(A_{LL}(p_T) 'a la RHIC')$
- calculation based on W.Vogelsang et al. (data-theory agreement for unpolarised case)



arXiv:1509.03526 to be published in PLB

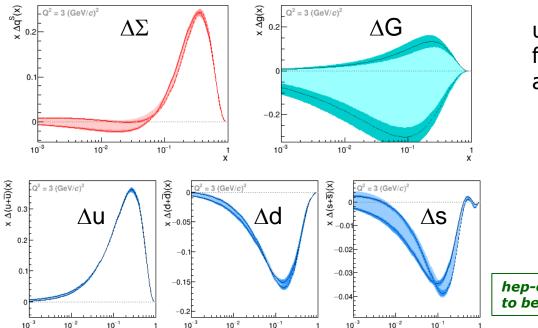
- COMPASS low Q^2 A_{LL} data prefer also $\Delta G > 0$
- Caveat: NNL resummation missing for polar.case and large dependence on fragmentation functions

3. QCD fits- World data on g_1^p and g_1^d ,



$$\frac{d g_1}{d Log(Q^2)} \propto -\Delta g(x, Q^2)$$

COMPASS NLO QCD fit to world DIS data


- Need wide coverage in x and Q²
- Need to assume the functional form of the polarized PDFs $\Delta\Sigma$, ΔG and Δq^{NS} , at a starting Q_{ref}^2 $\Delta q_{Si}(x|Q_0^2) = \eta_s x^{\alpha_s} (1-x)^{\beta_s} (1+\gamma_s x)/N_s$
- Fit to g₁ data, using DGLAP for Q² evolution → Obtain parametrisations.
- Explore various functional forms of polarized PDF, and wide range for $Q_{\rm ref}^2$ Example $Q_{\rm ref}^2$ varied between 1 and 60 (GeV/c)²:

All give similar good $\chi 2$. Does not affect much $\Delta \Sigma$, does change ΔG (~ equivalent to changing the functional form).

COMPASS NLO pQCD fit of g₁ world data

\rightarrow 2 classes of solutions, $\Delta G > 0$ and $\Delta G < 0$

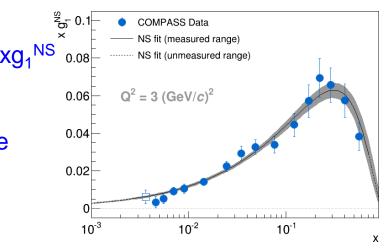
using different functional shapes and Q_{ref}^2

$$0.82 \le \Delta U \le 0.85$$

 $-0.45 \le \Delta D \le -0.42$
 $-0.11 \le \Delta S \le -0.08$

hep-ex/1503.08935 to be published in PLB

- Quark spin contribution: $0.26 < \Delta\Sigma < 0.36$ at $Q^2=3$ (GeV/c)² Largest uncertainty comes from the bad knowledge of functional forms. Result in fair agreement with other global fits
- Gluon spin contribution: ΔG not well constrained, even the sign, using DIS only Solution with ΔG >0 agrees with result from DSSV++ using RHIC pp data


Results for Bjorken sum rule from g₁ COMPASS data

Fundamental QCD sum rule, which relates proton and neutron spin structure functions g_1 . $\int_0^1 \left(g_1^p(x,Q^2) - g_1^n(x,Q^2)\right) dx = \frac{1}{6} \mid \frac{g_A}{g_V} \mid C_1^{NS}(Q^2)$

Using COMPASS data alone:

- Non-singlet fit: independent from ∆G
- Reduce systematics

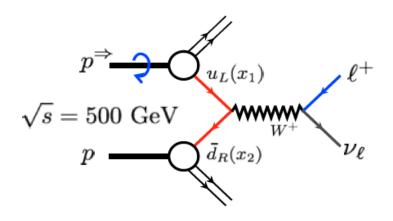
94% of the sum is from the measured range

X

COMPASS

$$(g_A/g_V)_{NLO}$$
= 1.22 ± 0.05 ± 0.10

neutron β decay

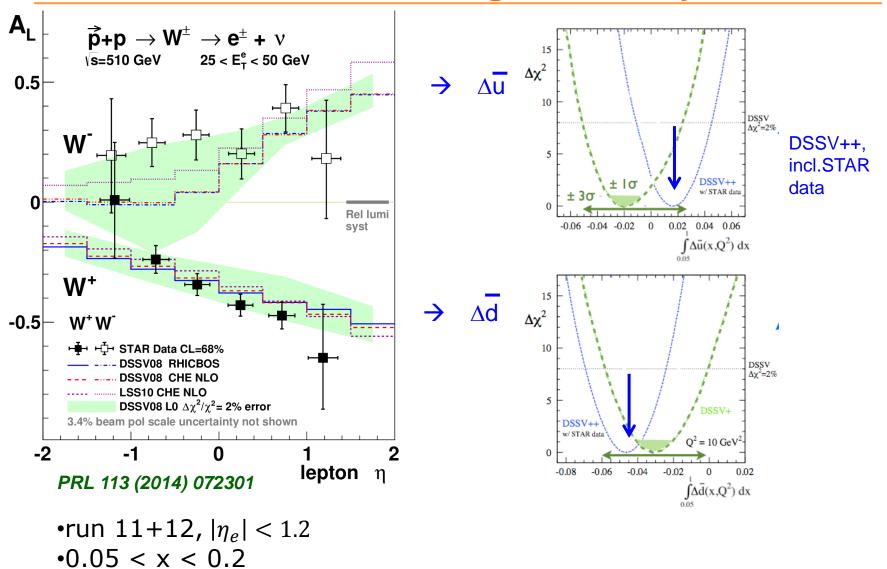

$$|g_A/g_V| = 1.269 \pm 0.002$$

→ Bjorken sum rule verified to 8%

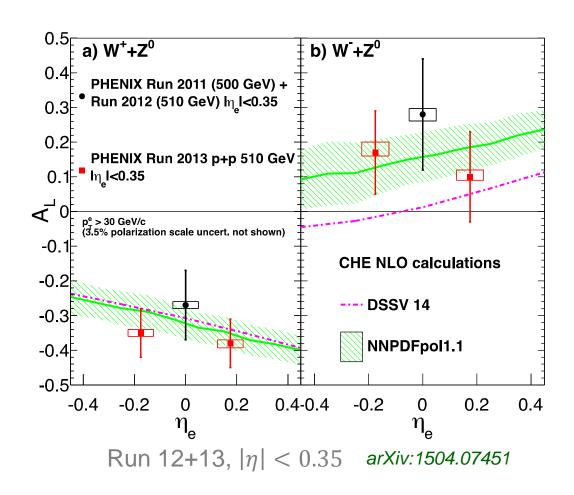
Better statistics and extended systematics studies compared to past

Note that experimental value increases from 1.22 to 1.25 when C₁^{NS} at NNLO

Quark helicities from W production in pp

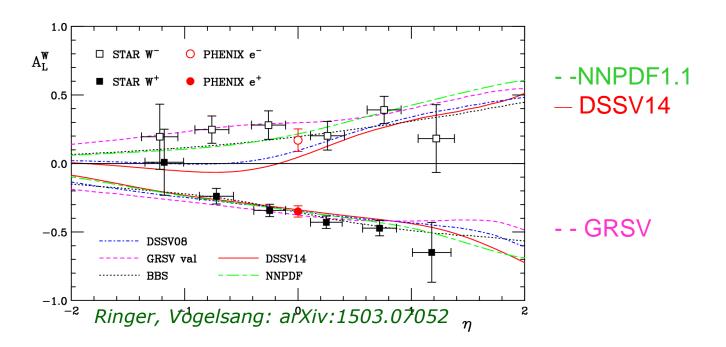


$$u + \overline{d} \to W^+ \to e^+ + \nu \qquad \to \Delta \overline{d}$$


$$\overline{u} + d \to W^- \to e^- + \overline{\nu} \qquad \to \Delta \overline{u}$$

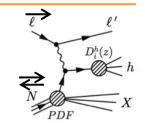
- Single spin asymmetry STAR and PHENIX
- Parity violating
- No quark fragmentation function needed
- High energy scale

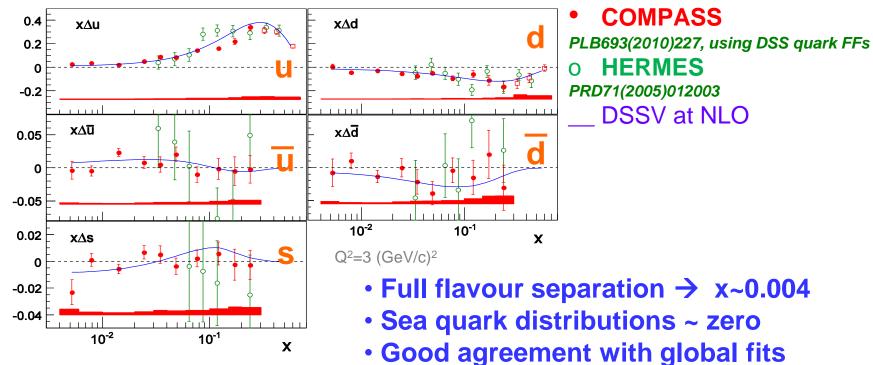
W results from STAR and global analysis


PHENIX W⁺⁻ production

Also larger A_L for W-wrt to DSSV14

recent NNPDF1.1 includes RHIC W data

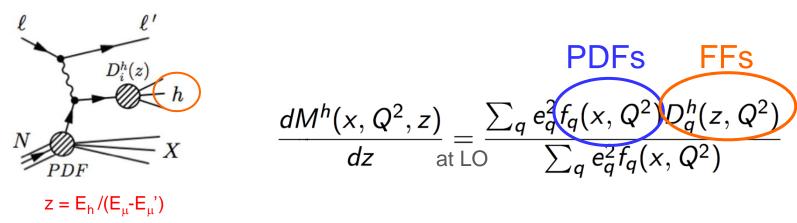

W+- prod. from STAR and PHENIX and QCD fits


Quark helicities from semi-inclusive DIS

$$l^{\rightarrow}p^{\rightarrow} \rightarrow l \ h^{+/-} \ \mathsf{X}$$

Hadron tags quark flavor (quark fragmentation functions)

Leading order extraction of quark helicities from spin asymmetries:

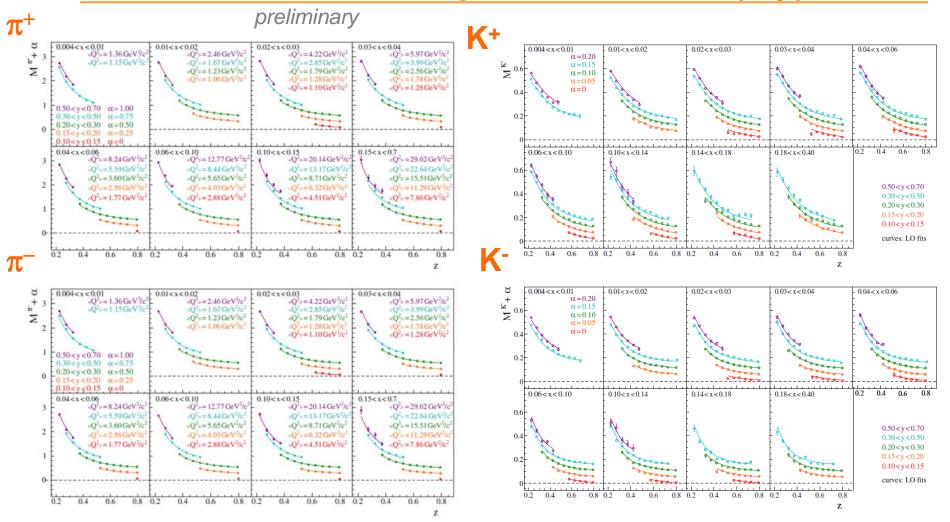

- What about △s? for which the integral is found negative from inclusive data (with SU3)?
- Here from SIDIS data, x > 0.005, Δs compatible with zero. Lower x?
- NB: The extraction assumes quark Fragmentation Functions known (DSS here)

Quark Fragmentation Functions (FF)

FFs: - Non perturbative object; needed to describe various reactions

- Strange quark FF= largest uncertainty in ∆s extraction from polarized SIDIS. Data exist from e⁺e⁻ and pp reactions, but unsufficient and at too high Q²

 \rightarrow Measure π , K, p multiplicities in **SIDIS** $\mu^+d \rightarrow \mu^+h^\pm X$



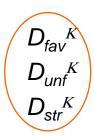
PDFs depend on x, while FFs depend on z

Data obtained in a fine binning in x, z, Q²

→ Constitute an input to global NLO QCD analyses to extract quark FFs

COMPASS π and K multiplicities vs z in (x,y) bins

- ~400 data points for π and 400 for K
- Strong z dependance
- $M\pi^+ \sim M\pi^-$ and $MK^+ > MK^-$

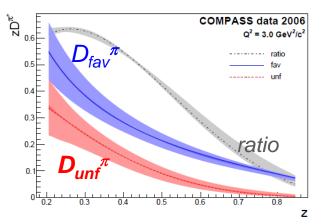

Extraction of quark FFs from COMPASS LO fits

Assume isospin and charge symmetry:

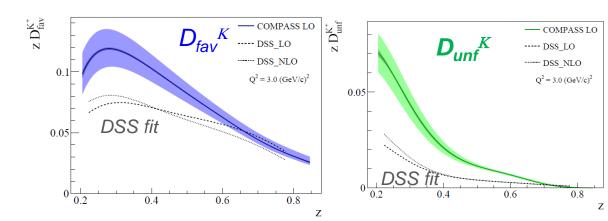
Pions : 2 independent FFs
$$D_{\text{fav}}^{\pi} = D_{u}^{\pi^{+}} = D_{d}^{\pi^{+}} = D_{d}^{\pi^{-}} = D_{\overline{u}}^{\pi^{-}}$$

$$D_{\text{unf}}^{\pi} \neq D_{d}^{\pi^{+}} = D_{\overline{u}}^{\pi^{+}} = D_{u}^{\pi^{-}} = D_{\overline{d}}^{\pi^{-}}$$
Assume also $D_{s}^{\pi^{+}} = D_{s}^{\pi^{-}} = D_{\text{unf}}^{\pi^{+}}$

Kaons: 3 independent FFs



- Choose functional forms for FFs (z); Chose PDF set; use DGLAP for Q² evolution
- Fit π^+ and π^- multiplicity data and extract the independent FFs
- Idem for Kaons


F. Kunne - 22

Quark FFs from COMPASS LO fits

Pions

Kaons

- As expected, $D_{fav} > D_{unf}$.
- COMPASS results ~agree with DSS and LSS NLO fits (not shown here)

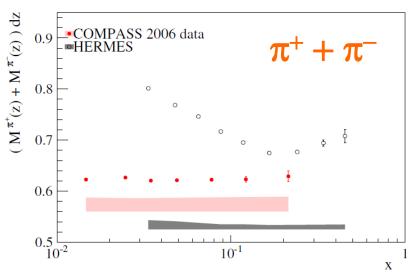
- $D_{fav} > D_{unf}$
- D_{fav} and D_{unf} larger than DSS and LSS NLO fits (which do not include these kaon data)
- D_{str}^K unstable (not shown; depends on choice of functional form)

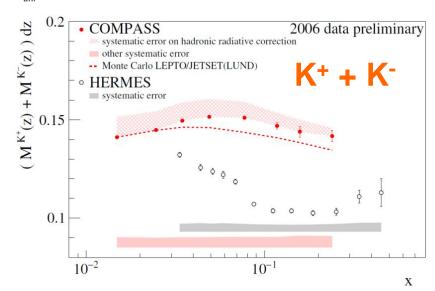
Sum of z integrated multiplicities $\pi^++\pi^-$ & K⁺+K⁻

For isoscalar target, simple dependence on FFs:

$$M^{\pi^{+}+\pi^{-}} = (1-2S/(5Q+2S)) D_{fav} + D_{unf}$$

 $5M^{K^++K^-} = D_Q^K + \text{S/Q } D_S^K$


high x data


low x data

$$\begin{cases} Q = u + \bar{u} + d + \bar{d}, \\ S = s + \bar{s}, \\ D_O^K = 4D_{fay}^K + 6D_{unf}^K \end{cases}$$

where:

~ no x dependence expected

COMPASS pion data:

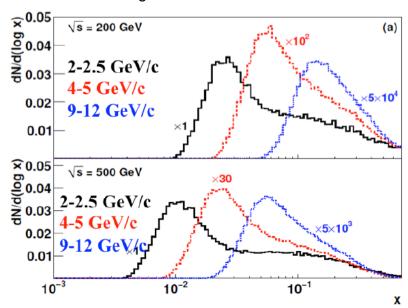
- significantly below HERMES
- no x dependence
 (as in EMC h, but not shown here)

COMPASS kaon data:

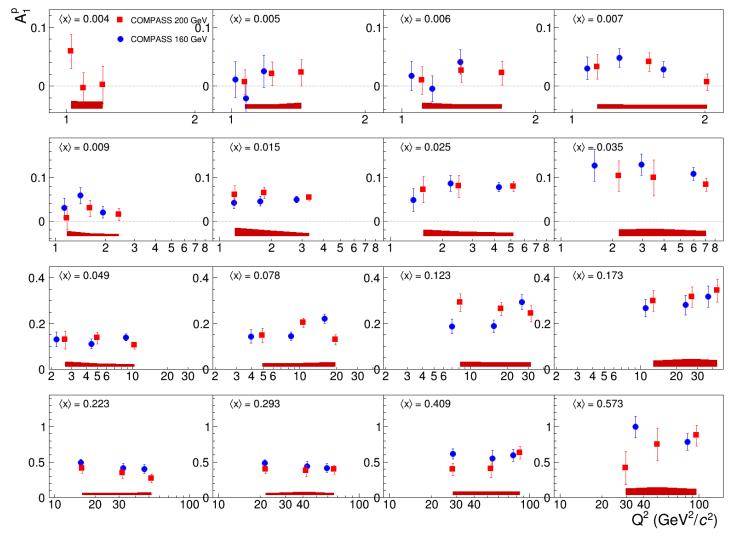
- significantly above HERMES one
- agree with MC simulation (LUND)
- Indicate smaller D_S^K , and larger D_Q^K

Summary

• ΔG : High impact data from RHIC STAR: pp \rightarrow jets and PHENIX pp \rightarrow π^0 : $\rightarrow \int_{0.05}^1 \Delta g(x) dx \simeq 0.20$ (undetermined at low x).


COMPASS data at low Q^2 and at high Q^2 also favor $\Delta G > 0$.

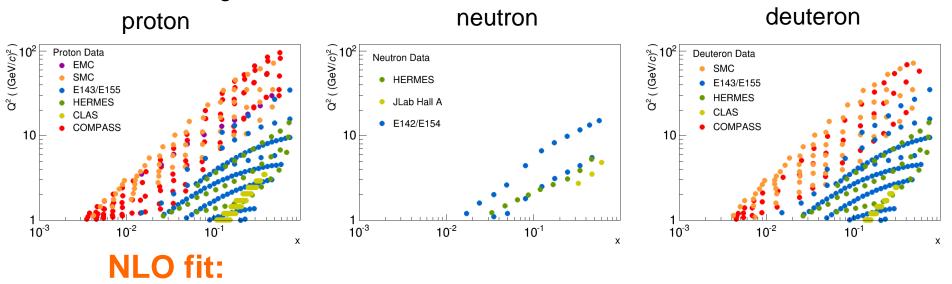
- COMPASS NLO QCD fit of g₁ world data:
 0.26< ΔΣ< 0.36 Uncertainty dominated by initial functional forms
 ΔG: Not constrained enough by DIS data alone
- Bjorken sum rule from COMPASS p and d data: Verified to 8%
- RHIC data on W production: constrain ∆u and ∆d; & more to come


Backup

RHIC

Probed $\mathbf{x}_{\mathrm{g}},$ for various \mathbf{p}_{T} of π^0

A_1^p (Q²) at various <x>



160 and 200 GeV data: no Q2 dependence observed

hep-ex/1503.08935 to be published in PLB

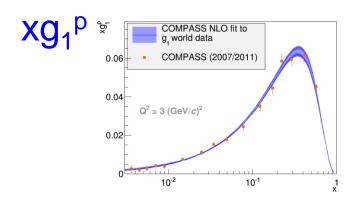
Fit to proton, neutron and deuteron world data

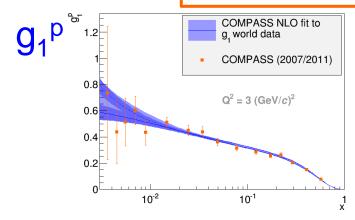
x-Q² coverage of world data

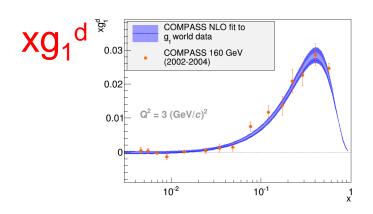
• Assume functional forms for $\Delta\Sigma$, ΔG and Δq^{NS} at a reference $Q_0^2 = 1(GeV/c)^2$

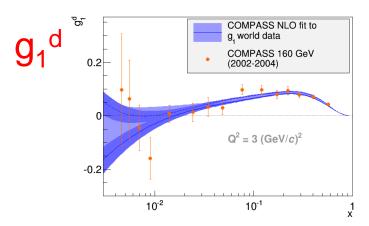
e.g.:
$$\Delta q_{Si}(x|Q_0^2) = \eta_s x^{lpha_s} (1-x)^{eta_s} (1+\gamma_s x)/N_s$$

- Assume SU₃
- Use DGLAP equations
- Fit world data

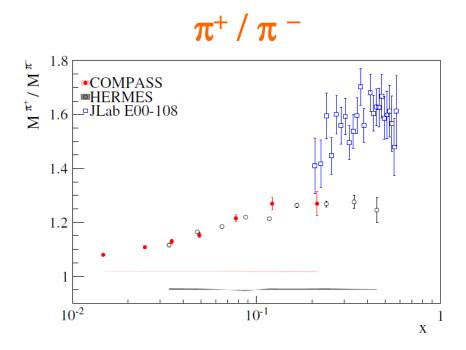

495 points with W>10 GeV

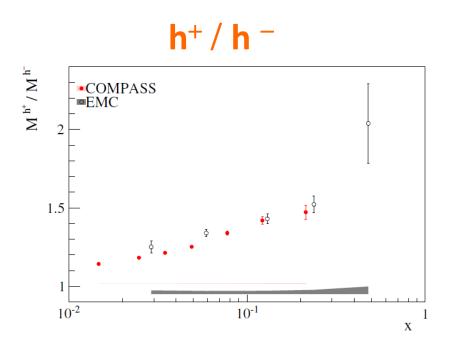

138 are from COMPASS, 11 free parameters.


g₁^p and g₁^d


COMPASS data and NLO QCD fit to world data

--- $\Delta G < 0$ solution $\Delta G > 0$ solution

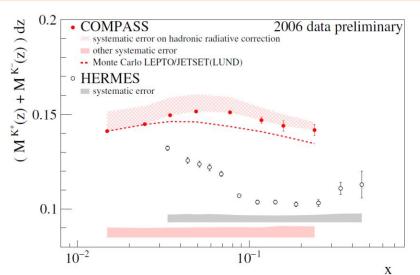




- g₁^p positive at low x
- Lower x data needed for sensitivity to ΔG

Ratio of z integrated multiplicities π^+ / π^-

Interesting because many systematic errors cancel in the ratio


Pions:

- Good agreement COMPASS-HERMES.
- Jlab data higher, but at lower W

Hadrons:

Good agreement COMPASS - EMC.

Sum of z integrated multiplicities K⁺ + K⁻

$$5M^{K^{+}+K^{-}} = D_{Q}^{K} + S/Q D_{S}^{K}$$
high x low x data

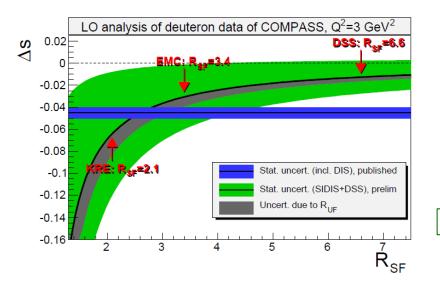
where:
$$\begin{cases}
D_Q^K = 4D_{fav}^K + 6D_{unf}^K \\
Q = u + \bar{u} + d + \bar{d} \\
S = s + \bar{s}
\end{cases}$$

- COMPASS data significantly above HERMES one
- agree rather well with MC simulation LEPTO+JETSET (LUND)

Hints on kaon fragmentation functions:

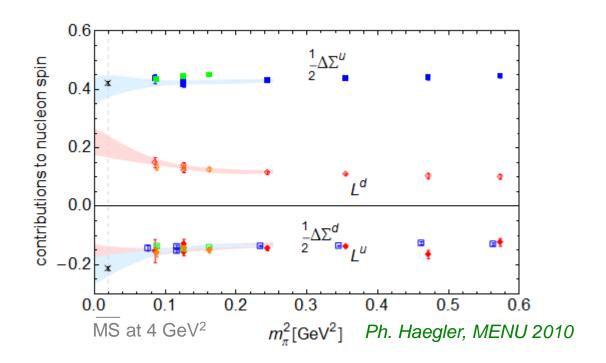
from these data at high x: 0.70 from DSS analysis: 0.43

 D_Q^K COMPASS result >> DSS one, as seen in LO fit where D_{fav} and D_{unfav} both larger for COMPASS than DSS



Low x data, agree well with MC/Lund Suggest much lower D_{str} than DSS

Quark Fragmentation Functions (FF)


- Non perturbative objects
- Process independent
- Needed to access strange quark polarization ∆s from polarized SIDIS.

strange quark FF = largest uncertainty in this extraction

PLB 680 (2009) 217

Lattice: quark spin and angular momentum

- Impressive results from lattice QCD
- Agreement with measurements for quark spin
- Predictions for angular momentum