Latest results from COMPASS

Fabienne KUNNE CEA /IRFU Saclay, France On behalf of the COMPASS Collaboration

- Chiral Perturbation Theory Pion polarisability
- Light meson spectroscopy
- Nucleon spin longitudinal and transverse
- Quark fragmentation functions
- Outlook

IVth European CLAS12 Workshop, 17-20 February 2015–1

COMPASS at CERN

Fixed target Secondary 200 GeV muon and hadron beams from CERN SPS

μ filter

Straws

50 m

MWPC

ECal HCal

GEMs

NIMA 577 (2007) 455

Drift chambers

dipole2

Micromegas

μ filter

RICH dipole1

SciFi

Silicon

Polarized

target

 \rightarrow Multipurpose setup

Polarized muon beam & polarized target: d, p

Hadron beam π / K / p & LH₂ or nuclei

Meson spectroscopy π , K polarisabilities

Future: GPDs from DVCS TMDs from Polarized Drell-Yan

Physics with hadron beams

π, **K**, **p beams - 200 GeV**:

Broad spectrum in energy transfer t Charged & neutral channels Huge statistics Potential for discovery of small intensity possible new states

Pion polarisability – Theoretical context

- To describe forces that determine substructure of hadrons
- Low energy QCD Chiral Perturbation Theory, ChPT, effective field theory, Pions π⁺, π⁻ π⁰: Goldstone bosons associated to spontaneous breaking of chiral symmetry.
- **Pion** : the simplest and lightest bound state of QCD (quark anti quark)
- Testing properties and interactions of the pion
- \rightarrow Testing if ChPT is a correct representation of QCD at low energy

Pion polarisabilities

Polarisabilities: deviation from pointlike particle = deformation in an electric (α) and magnetic (β) field

Precise predictions from Chiral Perturbation theory (Ch PT) $\alpha_{\pi} + \beta_{\pi} = (0.2 \pm 0.1) \cdot 10^{-4} \text{fm}^3$ $\alpha_{\pi} - \beta_{\pi} = (5.7 \pm 1.0) \cdot 10^{-4} \text{fm}^3$ $\alpha_{\pi} = (2.9 \pm 0.5) \cdot 10^{-4} \text{fm}^3$

Measurements difficult: tiny quantities,

Previous experiments to measure α_{π} since 1980: not conclusive

Measurement of pion polarisability

- Measure pion Compton cross-section $\gamma \pi \rightarrow \gamma \pi$ At LO, it is proportional to $\alpha_{\pi} - \beta_{\pi}$ and following ChPT result, one can assume $\alpha_{\pi} + \beta_{\pi} \sim 0$.
- Compare it to cross-section expected for pointlike particle by ChPT Observe reduction of ratio due to polarisability α_{π}

$$R_{\pi} = \left(\frac{d\sigma_{\pi\gamma}}{dx_{\gamma}}\right) \left/ \left(\frac{d\sigma_{\pi\gamma}^{0}}{dx_{\gamma}}\right) = 1 - \frac{3}{2} \cdot \frac{m_{\pi}^{3}}{\alpha} \cdot \frac{x_{\gamma}^{2}}{1 - x_{\gamma}} \alpha_{\pi}\right)$$

 Difficulty: no pion target. In ChPT, factorization of the πγ cross section in the πZ one, in the 'Equivalent Photon Approximation (EPA)'
 → Use the πZ reaction

The measurement... embedded in a nucleus

Pion polarizability - result

Pion polarizability – world data

COMPASS result:

- in agreement with ChPT,
- contradicts some previous measurements

Next steps: more statistics to come using 2012 data: α_{π} , β_{π} , some insight also into kaon polarisability

Light meson spectroscopy

Allowed combinations

$$J^{PC} = 0^{-+}, 0^{++}, 1^{--}, 1^{+-}, 2^{++}, \dots$$

"Forbidden" combinations

$$J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, \dots$$

Diffractive resonance production in $\pi^-p \rightarrow \pi^-\pi^+\pi^-p_{recoil}$

Sobar model Partial waves : J^{PC} M^ε [isobar] L

J^{PC}-exotic mesons

Partial Wave Analysis (PWA):

Step 1: In $(M_{3\pi}, t')$ bins, 88 PW, (27 with thresholds) Impose isobar description

Step 2: M_{3π} dependent fits on selected waves, combined fit of t' bins (same mass, width; different background and couplings) Extract resonance parameters

3π final state

$\pi^- p \rightarrow \pi^- \pi^+ \pi^- p_{recoil}$

Step 2 : PWA M dependent fit, ex: $1^{++} 0^+ \rho(770)\pi$ S

Same wave 1⁺⁺0⁺ ρ(770)π **S** log scale

11 t' slices

New a₁ (1420) - 1⁺⁺0⁺ f₀(980)π P

New meson identified, $J^{PC} = 1^{++}$

Exotic (non- $q\bar{q}$) features since only decays into $f_0(980)\pi$ ($f_0(980)$ superposition of $q\bar{q}$ and $s\bar{s}$ states).

Phase [deg] 100 $f(980) \pi P$ $\rho(770) \pi G$ 25 $1^{++}0^{+}f_{0}(980) \pi P$ Intensity / (20 MeV/ c^2) (a) $0.1 < t' < 1.0 (\text{GeV}/c)^2$ (1) Mass-dependent fit 20 (2) Resonance (3) Non-resonant term 15 (2)10 -100(1) $0.100 < t' < 0.113 (\text{GeV}/c)^2$ (d)-200 $164 \le t' \le 0.189 (\text{GeV}/c)^2$ 1.21.4 1.8 1.2 1.61.81.6 $m_{3\pi}$ [GeV/ c^2] $m_{3\pi}$ [GeV/ c^2]

 a_1 (1420) Mass= 1414 MeV/c² Γ = 150 MeV/c²

> arXiv1501.05732 Submitted to PRL

- Seen in charged and neutral channels
- Accessible thanks to high statistics (1% of main signal)

Interpretations

Origin unclear, possible explanations:

- Could be **associated with the** $f_1(1420)$, an iso-scalar resonance with strong **coupling to** $K\overline{K}^*$ final state, often interpreted as a molecular state: almost equal masses and similar narrow widths (first time that isospin partners of exotic states discovered).
- Another possibility is a dynamic generation through the strong coupling of the systems $a_1(1420)$, $f_0(980)\pi$, and $K\overline{K}^*$
- See also:
 B. Ketzer et al. <u>http://arxiv.org/abs/1501.07023</u>

Basdevant et al. http://arxiv.org/pdf/1501.04643.pdf

Physics with muon beams

- Gluon and quark polarization
- Hadronization
- Transversity

Gluon polarization $\overrightarrow{\Delta G}/\overrightarrow{G}$ from μ N scattering

Photon Gluon Fusion (PGF) process

Asymmetry of cross sections for longitudinal polarizations of beam and target, parallel and antiparallel

 $A_{II} = R_{PGF} < a_{LL} > < \Delta G/G > + A_{background}$

Fraction of Analyzing power process

Two signatures for PGF:

1/ q=c open charm $c \rightarrow D^0 \rightarrow K \pi$ Clean signature of PGF Limited statistics & large combinatorial background	COMPASS :1 point
2/ q= u,d,s high p _T hadron pair q q → h h High statistics Physical background	COMPASS : 4 points + HERMES &SMC

 \rightarrow Prelim. result reanalysis 'all p_T' method

$\frac{\Delta g/g \text{ from hadron muon production}}{\text{using "all } p_T \text{"events}}$

M. Stolarski , DIS-2014

Main goal of this new analysis : improve the extraction of ΔG , by removing some sources of systematic effects affecting the previous "2 high p_T hadron" analysis In addition, a significant reduction of the statistical error of $\Delta g/g$ is also obtained.

Three processes contribute to the cross-section

 $A_{LL}^{h}(x) = R_{LO} D A_{1}^{LO}(x) + R_{PQCD} a_{LL}^{QCDC} A_{1}^{LO}(x_{C}) + R_{PGF} a_{LL}^{PGF} \frac{\Delta g}{g} (x_{g})$

Simultaneous extraction of $\Delta g/g$, and A_1^{LO}

Extraction based on Monte Carlo description of all processes with relative weights (R_i) and analyzing powers (a_{LL}^i)

Process weights depends on p_T (at small p_T LO contribution is > 0.95)

$\Delta G/G$ from hadron prod. in DIS ('all-p_T')

New $\Delta G/G$ extraction at LO, in 3 x-bins

M. Stolarski, DIS-2014

Data compared to the 3 solutions from Results compared to other extractions COMPASS NLO QCD fit of g_1 world data of ΔG at LO (discussed later) ∆g/g COMPASS, all-p_ LO, Q²>1 (GeV/c)², prel., 2002-06 ∆g/g COMPASS, all-p,, Q²>1 (GeV/c)², prel., 2002-06 ∆G>0 COMPASS, Open Charm, 2002-07 0.4 ∆G<0 COMPASS NLO QCD fit, prel.</p> 0.4 COMPASS, high-p_, Q²<1 (GeV/c)², prel., 2002-04 ∆G node total uncertainty SMC, high-p_, Q²>1 (GeV/c)² 0.2 HERMES, high-p,, all Q² 0.2 0 -0.2 -0.2-0.4-0.4 10⁻² 10⁻² 10⁻¹ 10⁻¹ Xa Xa Most precise direct measurement of Δ G/G at LO

Data suggest positive value (2σ)

$$\Delta g/g\Big|_{\langle x_g \rangle = 0.10} = 0.113 \pm 0.038 \pm 0.035$$

Results are in agreement with the latest fits of NNPDF and DSSV++, using RHIC pp data, which give $\Delta G \sim 0.05$ to 0.15 for 0.05 <x< 0.2

ΔG from $A_{LL}(p_T)$ high p_T hadron photo production

Method 'à la RHIC': $\mu d \rightarrow \mu' h^{+/-} X$

Measure A_{LL}(p_T)

Compare to theoretical calculations with various assumptions for $\Delta G(x)$ No direct extraction, no model needed

Absolute cross-section in agreement with pQCD calculations, with 'resummations'

 \rightarrow Sets the theory framework for ΔG from high p_T events at this scale

Next step : Spin asymmetries A_{LL}(p_T) for same events (next slide) To be compared to calculations with ∆G hypotheses

ΔG from $A_{LL}(p_T)$ high p_T hadron photo production

M. Levillain, DIS-2014

COMPASS preliminary results for the spin asymmetry ALL(pT)

Comparison to theory... but only NLO available for polarized case:

∆G >0 favoured

However, need full calculation with 'threshold resummations' before concluding

New COMPASS proton data on g₁ – 200 GeV

F. Kunne

IVth European CLAS12 Workshop, 17-20 February 2015– 23

COMPASS NLO pQCD fit of g₁ world data

- Assume functional forms for $\Delta\Sigma$, ΔG and Δq^{NS} . Assume SU3
- Use DGLAP equations, relating $\Delta\Sigma$, ΔG evolutions . Fit world data.
- → 3 classes of solutions, Δ G>0, Δ G with a node, and Δ G<0

- Quark spin contribution : **0.26** < $\Delta\Sigma$ < **0.34** at Q²=3 (GeV/c)² Largest uncertainty comes from the bad knowledge of functional forms (for Δ G(x)). Result in fair agreement with other global fits, and with Lattice QCD.
- Gluon spin contribution: ΔG not well constrained, even the sign, using DIS only

Quark Fragmentation Functions (FF)

FFs : - Non perturbative, needed to describe various reactions

Needed to access to strange quark polar. ∆s measured in polar. SIDIS.
 strange quark FF= largest uncertainty in this extraction.

Data exist from e⁺e⁻ and pp reactions, but unsufficient and at too high Q²

→ Provide inputs to global QCD analyses to extract quark FF

Fine binning in x, z, Q^2 PDFs depend on x, while FFs depend on z.

π^+ and π^- multiplicities vs z in (x,y) bins

F. Kunne

IVth European CLAS12 Workshop, 17-20 February 2015– 26

Quark FFs into π , from COMPASS fits

N. Du Fresne at DIS-2014 Starting from π multiplicities, extract 2 FFs.

$$D_{\text{fav}}^{\pi +} = D_{u}^{\pi^{+}} = D_{d}^{\pi^{+}} = D_{d}^{\pi^{-}} = D_{u}^{\pi^{-}}$$
$$D_{\text{unf}}^{\pi +} = D_{d}^{\pi^{+}} = D_{u}^{\pi^{+}} = D_{u}^{\pi^{-}} = D_{d}^{\pi^{-}}$$

And assuming $D_{unf}^{\pi^+} = D_s^{\pi^+} = D_s^{\pi^-}$

Next step: Fragmentation functions into kaons $D_s^{K^+}$ and $D_s^{K^-}$ starting from kaon multiplicities

Results for Bjorken sum rule from g₁ COMPASS data

Fundamental QCD sum rule, which relates proton and neutron *M. Wilfert, DIS-2014* spin structure functions g₁.

Transversity- Collins and Sivers asymmetries

- Access via **SIDIS**, transversely polarized target
- Measure simultaneously several azimuthal asymmetries, out of which :

Collins: Outgoing hadron direction & quark transverse spin

Sivers: Nucleon spin & quark transverse momentum k_T

note: $\Delta_T q$ also measured in SIDIS using di-hadron fragmentation function

Collins asymmetry \rightarrow Transversity $\Delta_T u \quad \Delta_T d$

hep-ex/1408.4405 subm. to PLBF. Kunne

M. Anselmino et al., RRD87 (2013) 094019

Sivers asymmetry → Sivers function

Correlation between Nucleon spin & quark transverse momentum k_T

→ u and d quark Sivers function opposite

Nb: Asymmetry also measured for π and K <u>hep-ex/1408.4405</u> subm. to PLB

Transversity from dihadrons – Extraction of h1

using :

- COMPASS proton and deuteron data on dihadron azimuthal asymmetries (different analysis from Collins)
- dihadron FF + Q² evolution from Bacchetta et al. JHEP03 (2013) 119 h_1^{uv} h_1^{dv}

Comparison with Anselmino et al. (global fits of single hadron Collins asymmetries and FFs):

Very good agreement for u quark, and fair agreement for d quark transversity.

Transversity - dihadrons. Interplay with Collins

Hint at common physical origin for Collins mechanism and polarized dihadron fragmentation function as originally suggested by different *F. Bradamante [COMPASS], Como 2013, D-SPIN 2013 C. Adolph et al. [COMPASS], Phys. Lett. B 736 (2014) 124*

•The h⁺ and h⁻ Collins asymmetries are mirror symmetric
•The h⁺ and h⁻ asymmetries are entangled
•The 2h asymmetry can also be derived from the h+ asymmetry
•Sivers-like asymmetries also entangled, but no mirror symmetry

F. Bradamante [COMPASS], SPIN-2014, Beijing IVth European CLAS12 Workshop, 17-20 February 2015–33

COMPASS 2015 - 2018:

• 2015: Polarized Drell-Yan $\pi \ p\uparrow \rightarrow \mu^+\mu X$

First time ever

→ Fundamental test of universality of TMDs (Sivers, Boer-Mulders...) Expect change of sign in Drell-Yan vs SIDIS

• 2016-2017: GPDs $\mu \ \rho \rightarrow \mu \ \rho \ \gamma$

(Generalized Parton Distributions) via Deep Virtual Compton Scatt.

• PDFs and FFs strange quarks (in parallel to GPDs)

Summary

Pion polarisability

 α_{π} - β_{π} measurement in agreement with Ch PT

Light meson spectroscopy

Huge statistics in diffractive production, 3π channel, PWA New resonance $a_1(1420) \rightarrow f_0(980) \pi$

Gluon and quark contribution to nucleon spin

Gluon $\Delta G/G$: Latest extraction in 3 x bins ('all p_T '), positive contribution.

Quarks : Sum 0.26< $\Delta\Sigma$ < 0.34 from global QCD fit at NLO Extraction for all flavours from SIDIS measurements, down to x ~0.004. Towards agreement with Lattice QCD calculation

Transversity and Transverse Momentum Dependent distributions

Precise results on Collins and Sivers: gives $\Delta u_T(x)$ and $\Delta d_T(x)$ Interplay Collins effect / di hadron Much progress on all azimuthal asymmetries for TMDs (not shown)

Future 2015-2018:

TMDs via polarized Drell-Yan $\pi \mathbf{p} \uparrow \rightarrow \mu \mu$ GPds via Deep Virtual Compton Scattering $\mu \mathbf{p} \rightarrow \mu \mathbf{p} \gamma$

Step 1: PWA in (M, ť) bins

F. Kunne

IVth European CLAS12 Workshop, 17-20 February 2015–37

Diffractive resonance production - conclusion

• Mass dependent PWA of 3π charged channel,

Huge statistics, 50 M events, 10 times more than previous expts 11 t' bins

- Precise determination of resonance parameters
- Analysis proves the potential for establishing new small waves with firm grounds
- New $a_1(1420) \rightarrow f_0(980) \pi$

Central production $p p \rightarrow pK^+K^-p$

- Preliminary fit requires strong f₀(1370) signal
- Strong background (non resonant contributions at low mass)

f2^{1,4} (1525)^{1.8}²^{2.2}^{2.4} Invariant Mass of K⁺K⁻(GeV/c²)

DVCS - Examples of COMPASS projections

Beam-charge asymmety

Beam-charge difference

$\mathbf{c}_{1}^{\mathsf{I}} \propto \operatorname{Re}(\mathbf{F}_{1}\mathcal{H})$

New predictions by Kroll, Moutarde and Sabatié

ebruary 2015-40

Nucleon spin

How is the nucleon spin distributed among its constituents?

quark gluon orbital momentum

 $\Delta\Sigma$: sum over u, d, s, \overline{u} , \overline{d} , \overline{s}

can take any value: superposition of several states

Nucleon Spin $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L$

 $\Lambda\Sigma \sim 0.6$

Past:

Theory: QPM estimations, with relativistic effects Experiment: "Spin crisis" in 1988, when EMC measured

 $a_0 = \Delta \Sigma = 0.12 \pm 0.17$ MS scheme

Today: Precise world data on polarized DIS $g_1 + SU_f(3)$ $a_0 = \Delta \Sigma \sim 0.3$

First results from Lattice QCD on $\Delta \Sigma_{u,d}$ and $L_{u,d}$

Large experimental effort on ΔG measurement also because $a_0 = \Delta \Sigma - n_f (\alpha_s/2\pi) \Delta G$ (AB scheme)

The Collins mechanism

J. Collins, NPB396 (93)

Collins angle $\mathbf{k} \times \mathbf{P}_h \cdot \mathbf{S}_T \propto \cos\left(\frac{\pi}{2} - \phi\right) = \sin\phi$ transverse motion of hadron

spin analyzer of fragmenting quark single-spin asymmetry \rightarrow convolution $A_{UT}^{\sin(\phi)} \propto \left[h_1^q \otimes H_1^{\perp q \rightarrow h}\right]$ TMD factorization

The Di-hadron Fragm. Funct. mechanism

Collins, Heppelman, Ladinsky, NP B420 (94) P_1 $\frac{1}{2\mathbf{R}_T} \mathbf{P}_h$ k $\mathbf{P}_{hT}=0$ ST collinear! $\mathbf{P}_h \times \mathbf{R}_T \cdot \mathbf{S}'_T \propto \cos(\phi_{\mathbf{S}'_T} - (\phi_{R_T} + \pi/2))$ $= \cos(\pi - \phi_S - (\phi_{R_T} + \pi/2))$ = sin $(\phi_{R_T} + \phi_S)$ azimuthal orientation of hadron pair spin analyzer of fragmenting quark single-spin asymmetry \rightarrow product $A_{UT}^{\sin(\phi_R + \phi_S)} \propto h_1^q(x) H_1^{\triangleleft q \to h_1 h_2}(z, R_T^2)$ Radici, Jakob, Bianconi PR D65 (02); Bacchetta, Radici, PR D67 (03) collinear factorization evolution equations understood Ceccopieri, Radici, Bacchetta, P.L. B650 (07)

[M. Radici, IWHSS2013]

F. Kunne

IVth European CLAS12 Workshop, 17-20 February 2015-43

3π diffractive-Observation of new state a1(1420)

preliminary

Particle	J^{PC}	Mass Range	Width Range	PDG Values		
		$[MeV/c^2]$	$[MeV/c^2]$	$m[{\rm MeV}/c^2]$	$\Gamma~[{\rm MeV}/c^2]$	
"Established" states						
$a_1(1260)$	1^{++}	1260-1290	360-420	1230 ± 40	250-600	
$a_2(1320)$	2^{++}	1312-1315	108-115	$1318.3_{-0.6}^{+0.5}$	107 ± 5	
$a_4(2040)$	4++	1928–1959	360-400	1996^{+10}_{-9}	255^{+28}_{-24}	
$\pi_2(1670)$	2^{-+}	1635–1663	265-305	1672.2 ± 3.0	260 ± 9	
$\pi(1800)$	0^{-+}	1768–1807	212-280	1812 ± 12	208 ± 12	
$\pi_2(1880)$	2^{-+}	1900–1990	210-390	1895 ± 16	235 ± 34	
States not in PDG summary table						
$a_1(1420)$	1^{++}	1412-1422	130–150	—	—	
a'_1	1^{++}	1920–2000	155-255	1930^{+30}_{-70}	155 ± 45	
a'_2	2^{++}	1740–1890	300-555	1950^{+30}_{-70}	180^{+30}_{-70}	

Transversity

Three distribution functions are necessary to describe the structure of the nucleon at LO in the collinear case:

- q(x) : number density or unpolarised distribution
- $\Delta q(x) = q \Rightarrow q \Rightarrow$: longitudinal polarization or helicity distribution
- $\Delta_T q(x) = q^{\uparrow\uparrow} q^{\downarrow\uparrow}$: transverse polarization or transversity distribution

All 3 of equal importance

Further distributions exist, Transverse Momentum Dependent distributions (TMDs), revealing correlations between nucleon spin, quark spin and quark transverse momentum k_{T} .

All measured in COMPASS in SIDIS

Among them, the **Sivers** function.

Polarized Drell-Yan

5-month run in 2015 with π beam and transversely polarized target(NH3) $\pi^{-} p \uparrow \rightarrow \mu^{+}\mu^{-}X$

→ Measure TMDs, Sivers & Boer-Mulders

Drell-Yan: TMD x TMD SIDIS: TMD x FF

→ Fundamental test of universality of TMDs Expect change of sign in Drell-Yan vs SIDIS

Final State Interactions

Initial State Interactions

Pion induced Drell-Yan:

- π as alternative probe to test nuclear models and meson structure (not accessible in DIS)
- flavor dependence (specific q-qbar compound)

Sivers, Boer-Mulders... via Polarized Drell-Yan

Examples of COMPASS projections in mass region above J/ψ peak: 4 azimuthal asymmetries

• Will probe 3 TMDs: Sivers, Boer-Mulders and Pretzelosity, in overlapping kinematic region for Drell-Yan and SIDIS

F. Kunne

• Needed to test the change of sign, and check magnitude of signals.

Generalized parton distributions

 x, ξ : quark momentum fraction t : transfer to proton H(x, ξ, t) : Gen. Parton distribution Study correlation between longitudinal quark momentum and transverse position

Deep virtual Compton scattering (DVCS)

A process which interferes with Bethe-Heitler(BH) → Can be studied in the interference regime (Jlab and COMPASS) and at high energy where BH smaller (COMPASS)

Also accessible via Hard Exclusive Meson → flavor decomposition

Should also compare first moments to lattice QCD

Link to angular momentum - Ji sum rule:

For a quark f: $J^{f} = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} dx \ x \ \left[H^{f}(x,\xi,t) + E^{f}(x,\xi,t) \right]$

GPD H : accessible with unpolarized H target

GPD E : transversely polarized target

DVCS ex: Projection for t-slope

 $\begin{array}{ll} \mu \ p \rightarrow \mu \ p \ \gamma & x \ dependence \ of \ transverse \ size \ of \ the \ nucleon \\ \sigma^{\text{DVCS}}/\text{dt} \ \sim \ exp^{-B|t|} & B(x_B) \ = \ \frac{1}{2} < r_{\perp}^{\ 2}(x_B) > \end{array}$

x < 0.01 $x \sim 0.1$ $x \sim 0.3$

Also accessed via meson production ρ, ω, ϕ