

experiment NA58 at CERN

GPD programme at CERN using the COMPASS spectrometer

Oleg Kouznetsov JINR, Dubna On behalf of the COMPASS Collaboration

IWHSS 2015 Suzdal 18-20 May

Long way towards GPD

In 2010 the COMPASS-II program has been approved by the CERN **Research Board.** It consists of studies: **DVCS, HEMP, SIDIS, Polarized Drell-Yan and** Primakoff reactions. (Finally in 2012, 2015-2017)

OMPASS omb Field

19.05.2015

M. Diehl

Introduction to Generalized Parton Distributions Possible Measurements of GPDs at COMPASS N. d'Hose et al.

2

COMPASS kinematical coverage (Q², x_{Bi}) for DVCS

From PDFs to TMDs and GPDs

From Wigner distribution we can build "mother distributions" $\mathcal{U}(x, \ell_{\perp}, \ell_{\perp}) \rightarrow 3$ -dimensional nucleon structure

in momentum and configuration space:

From inclusive reactions to the exclusive ones

Deeply Virtual Compton Scattering (DVCS): $\ell p \rightarrow \ell' p' \gamma$ (golden channel)

Hard Exclusive Meson Production (HEMP): $\ell p \rightarrow \ell' p' \rho / \phi / J/\psi/\omega$

theoretically cleanest of the experimentaly accessible processes to measure GPDs "Distribution Amplitude" should be taken in addition into account But gives possibility separate the flavors , access to GPDs gluons etc.

GPDs and relations to the physical observables

The steps of the GPD Physics Program at COMPASS

2008: Very short test run & short (40 cm) LH₂ target
First observation of exclusive photon production (mainly BH)

2009: 10 days, same LH₂ target (10 x statistics 2008)
First a) hint of DVCS at large x_{Bj}b) observation « exclusive » π⁰
c) background estimation for DVCS & « exclusive » π⁰

Detection efficiency :

 $\epsilon_{\mu+p->\mu+p+\gamma} = 0.32 + / - 0.13$

<u>Global efficiency</u> : $\varepsilon_{\text{global}} = 0.13 + - 0.05$

- detection efficiency
- SPS & COMPASS availability
- Dead time & Trigger efficiency

2012: 4 weeks, full-scale LH₂ target, recoil detector and part of ECAL0
2016-2017: projections for 2 years of dedicated data taking (GPD H)
2007 and 2010: Exclusive vector meson production (no recoil detector)

>2018: DVCS with transversely polarized target and recoil detector \rightarrow GPD E Future addendum to COMPASS-II proposal

Exclusive single photon production $\ell p \rightarrow \ell' p' \gamma$

Large-angle electromagnetic calorimeter ECAL0

 $Q^2 = 1.5 \pm 0.5$ (GeV/c)² and $x_{Bj} = 0.06 \pm 0.005$

IWHSS 2015 Suzdal 18-20 May

The DVCS experiment at COMPASS

ECAL0 30% of modules were installed

CAMERA recoil proton detector surrounding the 2.5m long LH₂ target

IWHSS 2015 Suzdal 18-20 May

05.2015

CS data taking from 1-11 to 2-12-2012

ECAL2

Exclusive Photon Events Selection

Reconstructed interaction vertex in target volume

One single photon above DVCS production threshold

 $Q^2 > 1 (GeV/c)^2$, 0.05 < y < 0.9, 0.06 $(GeV/c)^2$ < t < 0.64 $(GeV/c)^2$

Exclusivity conditions:

- $\Delta \varphi = \varphi_{\text{meas}}^{\text{proton}} \varphi_{\text{reco}}^{\text{proton}}$
- Vertex pointing (ΔZ)
- Transv. momentum balance: $\Delta p_{\perp} = p_{\perp meas}^{proton} - p_{\perp reco}^{proton}$
- inner scintillator ΔZ arget μ_{in} vertex
- Four-momentum balance: $M_X^2 = (p_{\mu_{in}} + p_{p_{in}} - p_{\mu_{out}} - p_{p_{out}} - p_{\gamma})^2$
- Missing energy: $((p_{\mu_{in}} + p_{p_{in}} p_{\mu_{out}} p_{\gamma})^2 M_p^2)/2M_p$ 19.05.2015 IWHSS 2015 Suzdal 18-20 May

Exclusivity Variables: $\Delta \phi$

Exclusivity Variables: M_X²

Exclusivity Variables: ΔZ $M_{\chi}^{2} = (p_{\mu_{in}} + p_{p_{in}} - p_{\mu_{out}} - p_{p_{out}} - p_{\gamma})^{2}$ 500 Entries COMPASS 2012 Superior 1000 COMPASS 2012 Data Data MonteCarlo MonteCarlo 400 1000 300 800 600 200 400 200 100 $M_{\rm X}^2 (({\rm GeV/c}^2)^2)$ -1.0 -0.5 0.0 -30 -20 -40 -10 0 10 20 30 40 $\Delta Z (cm_s)$ IWHSS 2015 Suzdal 18-20 May 19.05.2015

Exclusivity Variables: Δp_{\perp}

The proton "signature" in the Recoil Detector after all exclusivity cuts

π^0 background to DVCS: kinematic ranges for photons in ECAL1 and ECAL2 MC by Andrzej Sandacz

π^0 and γ energies from MC by Andrzej Sandacz

dist = distance between cluster's centers

- 2γ separation dist>2 cm
- 100% efficiency dist~4-5 cm
- $E\pi^0 = 100 \text{ GeV}$ dist ~8 cm
- $E\pi^0$ <100 GeV from MC
- no bkg from 2γ non separated $\mu p \rightarrow \mu' p' \pi^0 \rightarrow \mu' p' \gamma \gamma$
- only bkg if 1γ is non detected $\mu p \rightarrow \mu' p' \pi^0 \rightarrow \mu' p' \gamma$
- The photons from π⁰ should be mainly registered in ECAL0 & ECAL1

π^0 background to DVCS: complementarities of HEPGEN and LEPTO generators

HEPGEN predicts the possible background to exclusive single- γ events from **EXCLUSIVE** π^0 . However, in Real Data the semi-inclusive reactions enter in the game as the exclusive ones due to the imperfect overall energy resolution of the spectrometer.

LEPTO doesn't generate exclusive events but **Semi-inclusive ones**. It is a general and flexible Monte Carlo generator to simulate complete lepton-nucleon scattering events and integrate cross sections. In contrast with HEPGEN Monte Carlo, LEPTO allows us to perform a more realistic comparison with Real Data. Moreover, it also permits to make predictions for the background for both the exclusive single- γ and the π^0 reactions

• "visible" π^0 (both γ detected, useful for MC normalization) • "invisible" π^0 (one γ ``lost", only estimated with MC)

π^0 background estimation

BH good agreement Data/MC

Excess of events (DVCS) after bkg subtraction

DVCS measurements with polarized μ^+ and μ^- beams

$$d\sigma_{(\mu\rho\to\mu\rho\gamma)} = d\sigma^{BH} + d\sigma^{DVCS}_{unpol} + P_{\mu} d\sigma^{DVCS}_{pol} + e_{\mu} a^{BH} \mathcal{R}e A^{DVCS} + e_{\mu} P_{\mu} a^{BH} Im A^{DVCS}$$

Unpolarized target: Constrain GPD H (2016-2017)

- Sum of cross sections: imaginary part of Compton Form Factor
- Difference of cross sections: real part of Compton Form Factor

 $S_{cs,v} \equiv d\sigma(\mu^{+\downarrow}) + d\sigma(\mu^{-\uparrow}) \propto d\sigma^{BH} + d\sigma^{DVCS}_{unpol} + K.s_1^{Int} \sin\phi \text{ and } s_1^{Int} \sim F_1 Im \mathcal{H}$ Integration over ϕ and BH subtraction $\rightarrow d\sigma^{DVCS}/dt \sim \exp(-B|t|)$

t-slope extraction \rightarrow nucleon tomography $< r_{\perp}^2(x_B) > \approx 2 B(x_B)$

First result will come from DVCS 2012 data soon

$$\mathcal{D}_{cs,\upsilon} \equiv d\sigma(\mu^{+\downarrow}) - d\sigma(\mu^{-\uparrow}) \propto \left[c_0^{Int} + c_1^{Int} \cos \phi \right] \text{ and } c_{0,1}^{Int} \sim F_1 \mathcal{Re} \mathcal{H}$$

Transverse size of the nucleon vs. Bjorken-x

Measure difference of DVCS cross sections

$$D_{CSU} = dS(\mathcal{M}^{+}) - dS(\mathcal{M}^{-}) \propto P_{\mathcal{M}} dS_{pol}^{DVCS} + e_{\mathcal{M}} \operatorname{Re}(I) \propto C_{0}^{Int} + C_{1}^{Int} \cos f$$
$$C_{0,1} \mid \operatorname{Re}(F_{1}H(X, t))$$

COMPASS expected results in comparison with different models

Difference of DVCS cross sections in (Q², X_{BJ})

DVCS on transversely polarized target: access GPD E (> 2018)

HEMP: access GPD E (< 2018)

- Hard Exclusive Meson Production (HEMP)
- Vector meson production $(\rho, \omega, \phi, J/\psi...) \Rightarrow$ H & E

 $E\rho^{0} = 1/\sqrt{2} (2/3 E^{u} + 1/3 E^{d} + 3/8 E^{g})$ $E\omega = 1/\sqrt{2} (2/3 E^{u} - 1/3 E^{d} + 1/8 E^{g})$ $E\phi = -1/3 E^{s} - 1/8 E^{g}$

2007 & 2010 data with transversely polarized target but without proton recoil detector

Both 2007&2010 data

Reconstructed mass of ρ and ω mesons and the corresponding E_{miss} distributions

Asymmetry $A_{UT,p}$ - NH_3 target (2007&2010)

COMPASS proton

Phys.Lett. B731 (2014) 19-26

- Blue line: Model from Goloskokov and Kroll
- Predictions for COMPASS kinematic

$$W = 8.1 \text{ GeV}/c^2$$
,
 $p_T^2 = 0.2 (\text{GeV}/c)^2$,
 $Q^2 = 2.2 (\text{GeV}/c)^2$

Only this asymmetry was measured to be non zero

Mean ρ and ω asymmetries - NH₃ target

Conclusions and Outlook

- GPDs are a well-suited tool to explore the structure of the nucleon
- COMPASS is a unique place to study DVCS and HEMP in the medium-X_{BJ} region
- The results of the 2012 DVCS test run are promising
- Exclusive meson production provides with complementary measurements to DVCS, flavour separation for GPDs, sensitivity to chiral-odd GPDs
- COMPASS results on exclusive ρ production show indications for GPD H_T, (results interpretation in terms of phenomenological Goloskokov-Kroll model)
- Transverse target spin asymmetries sensitive to GPD E (\rightarrow orbital angular momentum) & GPD H_T (\rightarrow transversity)
- 2016/17 data will deliver COMPASS DVCS results to help constraining GPD H and to better understand the transverse size of the nucleon
- Further ideas exist for >2018 to constrain GPD E

Input for Projections

Naturally polarized μ Beam with 160 GeV/c momentum $\Rightarrow P_{Beam} = 80\%$ 48 s SPS cycle with 9.6 s spill duration beam intensity 4.6 x 10⁸ μ^+ /spill = 9.6 x 10⁶ μ^+ /s (DC) 3 times smaller intensity for $\mu^$ data taking: 280 days \Rightarrow 70 days μ^+ , 210 days μ^- Target: a) 2.5m liquid Hydrogen $\Rightarrow \mathcal{L} = 1 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1}$ b) 1.2m NH₃ (polarized) $\Rightarrow \mathcal{L} = 3.4 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1}$ $P_{target} = 90\%$, dilution factor f=0.17

New recoil-proton detector

ECAL1 (40...150mrad), ECAL2 (0...40mrad) + new ECAL0 (150...300mrad) Global efficiency ε =0.1 (SPS, COMPASS, tracking, photon)