

Measurements of transverse spin and transverse momentum effects at COMPASS

6TH INTERNATIONAL CONFERENCE ON PHYSICS OPPORTUNITIES AT AN EIC POETIC VI, 7TH – 11TH OF SEPTEMBER 2015, PALAISEAU, PARIS, FRANCE

Accessing TMD PDFs and FFs

SIDIS 1h x-section

$$A_{U(L),T}^{w(\varphi_h,\varphi_S)} = \frac{F_{U(L),T}^{w(\varphi_h,\varphi_S)}}{F_{UU,T} + \varepsilon F_{UU,L}}$$

$$\frac{d\sigma}{dxdydzdP_{h,l}^{2}d\varphi_{h}d\psi} = \left[\frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2x}\right)\right] \times \left(F_{UU,T}+\varepsilon F_{UU,L}\right) \times \qquad \varepsilon = \frac{1-y-\frac{1}{4}y^{2}\gamma^{2}}{1-y+\frac{1}{2}y^{2}+\frac{1}{4}y^{2}\gamma^{2}}, \ \gamma = \frac{2xM}{Q}$$

$$\left[1+\cos\varphi_{h}\times\sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\cos\varphi_{h}} + \cos(2\varphi_{h})\times\varepsilon A_{UU}^{\cos(2\varphi_{h})} + \lambda\sin\varphi_{h}\times\sqrt{2\varepsilon(1-\varepsilon)}A_{LU}^{\sin\varphi_{h}} + \frac{1}{y^{2}}\right] \times \left(F_{UU,T}+\varepsilon F_{UU,L}\right) \times \qquad \varepsilon = \frac{1-y-\frac{1}{4}y^{2}\gamma^{2}}{1-y+\frac{1}{2}y^{2}+\frac{1}{4}y^{2}\gamma^{2}}, \ \gamma = \frac{2xM}{Q}$$

$$\left[1+\cos\varphi_{h}\times\sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\sin\varphi_{h}} + \sin(2\varphi_{h})\times\varepsilon A_{UU}^{\cos(2\varphi_{h})} + \lambda\sin\varphi_{h}\times\sqrt{2\varepsilon(1-\varepsilon)}A_{LU}^{\sin\varphi_{h}} + \frac{1}{y^{2}}\right] \times \left(F_{UU,T}+\varepsilon F_{UU,L}\right) \times \qquad \varepsilon = \frac{1-y-\frac{1}{4}y^{2}\gamma^{2}}{1-y+\frac{1}{2}y^{2}+\frac{1}{4}y^{2}\gamma^{2}}, \ \gamma = \frac{2xM}{Q}$$

$$\left[1+\cos\varphi_{h}\times\sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\sin\varphi_{h}} + \sin(2\varphi_{h})\times\varepsilon A_{UU}^{\cos(2\varphi_{h})} + \lambda\sin\varphi_{h}\times\sqrt{2\varepsilon(1-\varepsilon)}A_{LU}^{\sin\varphi_{h}} + \frac{1}{y^{2}}\right] \times \left(F_{UU,T}+\varepsilon F_{UU,L}\right) \times \qquad \varepsilon = \frac{1-y-\frac{1}{4}y^{2}\gamma^{2}}{1-y^{2}+\frac{1}{4}y^{2}\gamma^{2}}, \ \gamma = \frac{2xM}{Q}$$

$$\left[1+\cos\varphi_{h}\times\sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\sin\varphi_{h}} + \sin(2\varphi_{h})\times\varepsilon A_{UU}^{\sin(2\varphi_{h})} + \frac{1}{y^{2}} + \frac{1}{y^{2}}y^{2}}\right] \times \left(F_{UU,T}+\varepsilon F_{UU,L}\right) \times \qquad \varepsilon = \frac{1-y-\frac{1}{4}y^{2}\gamma^{2}}{1-y^{2}+\frac{1}{4}y^{2}\gamma^{2}}, \ \gamma = \frac{2xM}{Q}$$

$$\left[1+\cos\varphi_{h}\times\sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\sin\varphi_{h}} + \sin(2\varphi_{h})\times\varepsilon A_{UU}^{\cos(2\varphi_{h})} + \frac{1}{y^{2}}} + \frac{1}{y^{2}}y^{2}}\right] \times \left(F_{UU,T}+\varepsilon F_{UU,L}\right) \times \qquad \varepsilon = \frac{1-y-\frac{1}{4}y^{2}\gamma^{2}}{1-y^{2}}, \ \gamma = \frac{2xM}{Q}$$

$$\left\{1+\cos\varphi_{h}\times\sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\sin\varphi_{h}} + \sin(2\varphi_{h})\times\varepsilon A_{UU}^{\sin(2\varphi_{h})} + \frac{1}{y^{2}}} + \frac{1}{y^{2}}y^{2}}\right\}$$

$$\left\{1+\cos\varphi_{h}\times\sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\sin\varphi_{h}} + \frac{1}{y^{2}}} + \frac{1}{y^{2}}y^{2}} + \frac{1}{y^{2}}$$

Paris, September 7th-11th 2015

The polarized Drell-Yan process in π^- p

$$\frac{d\sigma}{d^4qd\Omega} = \left[\frac{\alpha^2}{Fq^2} \left(F_{UU}^1 + F_{UU}^1\right) \left(1 + A_{UU}^1 \cos^2\theta\right)\right] \times \left[1 + \cos\varphi \times D_{\left[\sin 2\theta\right]} A_{UU}^{\cos\varphi} + \cos(2\varphi) \times D_{\left[\sin^2\theta\right]} A_{UU}^{\cos(2\varphi_h)} + S_L \left[\sin\varphi \times D_{\left[\sin 2\theta\right]} A_{UL}^{\sin\varphi} + \sin(2\varphi) \times D_{\left[\sin^2\theta\right]} A_{UL}^{\sin(2\varphi)}\right] + S_L \left[\sin\varphi \times D_{UL}^{\cos(2\varphi)}\right] + S_L \left[\sin\varphi \times D_{UL}^{$$

$$\left| \begin{array}{c} \sin \varphi_{S} \times \left(D_{[1]} A_{UT}^{\sin \varphi_{S}} + D_{[\cos^{2} \theta]} \tilde{A}_{UT}^{\sin \varphi_{S}} \right) + \\ \sin(\varphi - \varphi_{S}) \times \left(D_{[\sin 2\theta]} A_{UT}^{\sin(\varphi - \varphi_{S})} \right) + \\ \sin(\varphi + \varphi_{S}) \times \left(D_{[\sin 2\theta]} A_{UT}^{\sin(\varphi + \varphi_{S})} \right) + \\ \sin(2\varphi - \varphi_{S}) \times \left(D_{[\sin^{2} \theta]} A_{UT}^{\sin(2\varphi - \varphi_{S})} \right) + \\ \sin(2\varphi + \varphi_{S}) \times \left(D_{[\sin^{2} \theta]} A_{UU}^{\sin(2\varphi_{h} + \varphi_{S})} \right) + \\ \end{array} \right|$$

Collins-Soper frame (of virtual photon) θ , ϕ lepton plane wrt hadron plane target rest frame

 ϕ_S target transverse spin vector /virtual photon

TMD Distribution Functions

Paris, September 7th-11th 2015

LO content

SIDIS

$$\begin{aligned} A_{UU}^{\cos\phi_{h}} & \propto \quad \frac{1}{Q} \Big(f_{1}^{q} \otimes D_{1q}^{h} - h_{1}^{\perp q} \otimes H_{1q}^{\perp h} + \cdots \Big) & A_{LT}^{\cos(\phi_{h}-\phi_{S})} & \propto \quad g_{1T}^{q} \otimes D_{1q}^{h} \\ A_{UU}^{\cos 2\phi_{h}} & \propto \quad h_{1}^{\perp q} \otimes H_{1q}^{\perp h} + \frac{1}{Q} \Big(f_{1}^{q} \otimes D_{1q}^{h} + \cdots \Big) & A_{UT}^{\sin\phi_{S}} & \propto \quad \frac{1}{Q} \Big(h_{1}^{q} \otimes H_{1q}^{\perp h} + f_{1T}^{\perp q} \otimes D_{1q}^{h} + \cdots \Big) \\ A_{UT}^{\sin(\phi_{h}-\phi_{S})} & \propto \quad f_{1T}^{\perp q} \otimes D_{1q}^{h} & A_{UT}^{\cos\phi_{S}} & \propto \quad \frac{1}{Q} \Big(h_{1}^{+q} \otimes H_{1q}^{\perp h} + f_{1T}^{\perp q} \otimes D_{1q}^{h} + \cdots \Big) \\ A_{UT}^{\sin(\phi_{h}+\phi_{S})} & \propto \quad h_{1}^{d} \otimes H_{1q}^{\perp h} & A_{UT}^{\cos\phi_{S}} & \propto \quad \frac{1}{Q} \Big(h_{1}^{+q} \otimes H_{1q}^{\perp h} + f_{1T}^{\perp q} \otimes D_{1q}^{h} + \cdots \Big) \\ A_{UT}^{\sin(\delta\phi_{h}-\phi_{S})} & \propto \quad h_{1}^{d} \otimes H_{1q}^{\perp h} & A_{LT}^{\cos\phi_{S}} & \propto \quad \frac{1}{Q} \Big(g_{1T}^{q} \otimes D_{1q}^{h} + \cdots \Big) \\ A_{UT}^{\sin(\delta\phi_{h}-\phi_{S})} & \propto \quad h_{1}^{\perp q} \otimes H_{1q}^{\perp h} & A_{LT}^{\cos(2\phi_{h}-\phi_{S})} & \propto \quad \frac{1}{Q} \Big(g_{1T}^{q} \otimes D_{1q}^{h} + \cdots \Big) \\ A_{UT}^{\sin(\delta\phi_{h}-\phi_{S})} & \propto \quad h_{1}^{\perp q} \otimes H_{1q}^{\perp h} & A_{LT}^{\cos(2\phi_{h}-\phi_{S})} & \propto \quad \frac{1}{Q} \Big(g_{1T}^{q} \otimes D_{1q}^{h} + \cdots \Big) \\ A_{UT}^{\cos(2\phi_{h}-\phi_{S})} & \propto \quad \frac{1}{Q} \Big(g_{1T}^{q} \otimes D_{1q}^{h} + \cdots \Big) \\ A_{UT}^{\cos(2\phi_{h}-\phi_{S})} & \propto \quad \frac{1}{Q} \Big(g_{1T}^{q} \otimes D_{1q}^{h} + \cdots \Big) \\ A_{UT}^{\cos(2\phi_{h}-\phi_{S})} & \propto \quad \frac{1}{Q} \Big(g_{1T}^{q} \otimes D_{1q}^{h} + \cdots \Big) \\ A_{UT}^{\cos(2\phi_{h}-\phi_{S})} & \propto \quad \frac{1}{Q} \Big(g_{1T}^{q} \otimes D_{1q}^{h} + \cdots \Big) \\ A_{UT}^{\cos(2\phi_{h}-\phi_{S})} & \propto \quad \frac{1}{Q} \Big(g_{1T}^{q} \otimes D_{1q}^{h} + \cdots \Big) \\ A_{UT}^{\cos(2\phi_{h}-\phi_{S})} & \propto \quad \frac{1}{Q} \Big(g_{1T}^{q} \otimes D_{1q}^{h} + \cdots \Big) \\ A_{UT}^{\cos(2\phi_{h}-\phi_{S})} & \propto \quad \frac{1}{Q} \Big(g_{1T}^{q} \otimes D_{1q}^{h} + \cdots \Big) \\ A_{UT}^{\cos(2\phi_{h}-\phi_{S})} & \propto \quad \frac{1}{Q} \Big(g_{1T}^{q} \otimes D_{1q}^{h} + \cdots \Big) \\ A_{UT}^{\cos(2\phi_{h}-\phi_{S})} & \propto \quad \frac{1}{Q} \Big(g_{1T}^{q} \otimes D_{1q}^{h} + \cdots \Big) \\ A_{UT}^{\cos(2\phi_{h}-\phi_{S})} & \propto \quad \frac{1}{Q} \Big(g_{1T}^{q} \otimes D_{1q}^{h} + \cdots \Big) \\ A_{UT}^{\cos(2\phi_{h}-\phi_{S})} & \propto \quad \frac{1}{Q} \Big(g_{1T}^{q} \otimes D_{1q}^{h} + \cdots \Big) \\ A_{UT}^{\cos(2\phi_{h}-\phi_{S})} & \propto \quad \frac{1}{Q} \Big(g_{1T}^{q} \otimes D_{1q}^{h} + \cdots \Big) \\ A_{UT}^{\cos(2\phi_{h}-\phi_{S})} & \propto \quad \frac{1}{Q} \Big(g_{1T}^{q} \otimes D_{1q}^{h} + \cdots \Big) \\ A_{UT}^{\cos(2\phi_{h}-\phi$$

$$\begin{array}{ll} A_U^{\cos 2\varphi_{CS}} & \propto & h_{1,\pi}^{\perp q} \otimes h_{1,p}^{\perp q} \\ A_T^{\sin\left(2\varphi_{CS}-\varphi_S\right)} & \propto & h_{1,\pi}^{\perp q} \otimes h_1^q \end{array}$$

Paris, September 7th-11th 2015

POETIC VI

 $egin{aligned} &A_T^{\sin arphi_{CS}} & \propto & f_{1,\pi}^{\,q} \otimes f_{1T,p}^{\,\perp q} \ &A_T^{\sin \left(2 arphi_{CS} + arphi_S
ight)} & \propto & h_{1,\pi}^{\perp q} \otimes h_{1T,p}^{\,\perp q} \end{aligned}$

- fixed target
- experiment
- at the CERN SPS

data taking: since 2002

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

Collaboration

~ 250 physicists from 24 Institutions of 13 Countries

Paris, September 7th-11th 2015

COMPASS Collaboration

Paris, September 7th-11th 2015

POETIC VI

8

COMPASS-I

- large angular acceptance
- broad kinematical range

two stages spectronfieter Large Angletspectrolumeter (SMIc) Small Angle Spectrometer (SM2)

9

Space resolution

Paris, September 7th-11th 2015

the polarized target system (>2005)

opposite polarisation

polarization dilution factor d (⁶LiD) p (NH₃) 50% 90% 40% 16%

no evidence for relevant nuclear effects (160 GeV)

Paris, September 7th–11th 2015

POETIC VI

COMPASS

Few facts:

Transverse Spin and Momentum effects were put under scrutiny by the COMPASS Proposal in 1996, starting with transversity via the Collins

mechanism

We propose to measure in semi-inclusive DIS on transversely polarised proton and deuterium targets the transverse spin distribution functions $\Delta_T q(x) = q_{\uparrow}(x) - q_{\downarrow}(x)$, where $\uparrow (\downarrow)$ indicates a quark polarisation parallel (antiparallel) to the transverse polarisation of the nucleon. Hadron identification allows to tag the quark flavour.

As suggested by J. Collins [71], the fragmentation function for transversely polarised quarks should exhibit a specific azimuthal dependence. The transversely polarised quark fragmentation function \mathcal{D}_q^h should be built up from two pieces, a spin-independent part D_q^h , and a spin-dependent part ΔD_q^h :

 $\mathcal{D}_{q}^{h}(z,\vec{p}_{q}^{h}) = D_{q}^{h}(z,p_{q}^{h}) + \Delta D_{q}^{h}(z,p_{q}^{h}) \cdot \sin(\phi_{h} - \phi_{S'}), \qquad (3.23)$

The measurement of the Sivers PDF was added to the program soon after ... the other TMD with the developments over the years

Measurements started in 2002 by HERMES (p) and COMPASS (d)

This field has grown considerably in the last years and comes one of high priority measurements for the JLab12 program

Unpolarized SIDIS

- The cross-section dependence from p_T^h results from:
 - intrinsic k_{\perp} of the quarks
 - p_{\perp} generated in the quark fragmentation
 - A Gaussian ansatz for k_{\perp} and p_{\perp} leads to
 - $\langle p_{T,h}^2 \rangle = z^2 \langle k_\perp^2 \rangle + \langle p_\perp^2 \rangle$

The azimuthal modulations in the unpolarized cross-sections comes from:

- Intrinsic k_{\perp} of the quarks
- The Boer-Mulders PDF

Difficult measurements were one has to correct for the apparatus acceptance

Unpolarized SIDIS

Paris, September 7th-11th 2015

Boer-Mulders in $\cos 2\phi$

Boer-Mulders in $\cos 2\phi$

Transversity

is chiral-odd:

observable effects are given only by the product of h_1^q (x) and an other chiral-odd function can be measured in SIDIS on a transversely polarised target via "quark polarimetry"

 $\ell \mathbf{N}^{\uparrow} \to \ell' \mathbf{h} \mathbf{X}$ $\ell \mathbf{N}^{\uparrow} \to \ell' \mathbf{h} \mathbf{h} \mathbf{X}$ $\ell \mathbf{N}^{\uparrow} \to \ell' \mathbf{\Lambda} \mathbf{X}$

"Collins" asymmetry

"Collins" Fragmentation Function

"two-hadron" asymmetry

"Interference" Fragmentation Function

A polarisation

Fragmentation Function of q↑→Λ

Transversity from Collins SSA and Collins FF

Paris, September 7th-11th 2015

Collins asymmetry on proton

x > 0.032 region

charged pions

COMPASS and HERMES results

Paris, September 7th–11th 2015

Collins asymmetry on proton. Multidimensional

First extraction of TSAs within a Multi-D $(x: Q^2: z: p_T)$ approach

One dense plot out of many

Paris, September 7th-11th 2015

Collins asymmetry fits

M. Anselmino et al., arXiv:1303.3822 fit to HERMES p, COMPASS p and d, Belle e^+e^- data

Transversity from Collins

Combined analyses of HERMES, COMPASS and BELLE fragm.fct. data

Anselmino et al. arXiv: 1303.3822

Paris, September 7th-11th 2015

2h asymmetries on p

Paris, September 7th-11th 2015

Transversity from 2h p and d results

Pavia

use the same coefficients evaluated by A. Bacchetta et al. from Belle data [JHEP1303 (2013)119]

Paris, September 7th-11th 2015

Hadron correlations

Interplay between Collins and IFF asymmetries

common hadron sample for Collins and 2h analysis

25

Asymmetries for x > 0.032 vs $\Delta \phi = \phi_{h^+} - \phi_{h^-}$

 $a = \frac{\sigma_{1C}^{h^+h^-}(\Delta\phi)}{\sigma_U(\Delta\phi)}$ $\sigma^{h^+h^-}_{2C}(\Delta\phi)$ $\sigma_U(\Delta \phi)$

ratio of the integrals compatible with $4/\pi$

Paris, September 7th-11th 2015

POETIC VI

a $\sqrt{2(1-\cos\Delta\phi)}$

a $(1 - \cos \Delta \phi)$

a $(1 - \cos \Delta \phi)$

Sivers Asymmetry

Sivers: correlates nucleon spin & quark transverse momentum k_T/T-ODD

at LO:

A _{Siv} =	$\sum_{q} e_{q}^{2} f_{1Tq}^{-} \otimes D_{q}^{n}$	
	$\overline{\sum_{q} e_{q}^{2} q \otimes D_{q}^{h}}$	

 $\mu p^{\uparrow} \rightarrow \mu X h^{\pm}$

The Sivers PDF				
1992	Sivers proposes f_{1T}^{\perp}			
1993	J. Collins proofs $f_{1T}^{\perp} = 0$ for T invariance			
2002	S. Brodsky, Hwang and Schmidt demonstrate that f_{1Tq}^{\perp} may be $\neq 0$ due to FSI			
2002	J. Collins shows that $(f_{1T}^{\perp})_{DY} = -(f_{1T}^{\perp})_{SIDIS}$			
2004	HERMES on p: $A_{Siv}^{\pi^+} \neq 0$ and $A_{Siv}^{\pi^-} = 0$			
2004	COMPASS on d: $A_{Siv}^{\pi^+} = 0$ and $A_{Siv}^{\pi^-} = 0$			
2008	COMPASS on p: $A_{Siv}^{\pi^+} \neq 0$ and $A_{Siv}^{\pi^-} = 0$			

Paris, September 7th-11th 2015

Sivers asymmetry on p

charged pions (and kaons), HERMES and COMPASS

Paris, September 7th-11th 2015

Sivers asymmetry on proton

charged hadrons, 2010 data - Q² evolution comparison with

S. M. Aybat, A. Prokudin and T. C. Rogers calculations PRL 108 (2012) 242003

Paris, September 7th-11th 2015

Sivers asymmetry on proton. Multidimensional

First ever extraction of TSAs within such a Multi-D $(x: Q^2: z: p_T)$ approach

Paris, September 7th-11th 2015

Sivers asymmetry on deuteron and proton for Gluons

Paris, September 7th-11th 2015

COMPASS

NEAR FUTURE: - polarized DY - unpolarized SIDIS - DVCS

Paris, September 7th-11th 2015

Test of universality

T-odd character of the Boer-Mulders and Sivers functions

In order not vanish by time-reversal invariance T-odd SSA require an interaction phase generated by a rescattering of the struck parton in the field of the hadron remnant

before hard em-scattering

these functions are process dependent, they change sign to provide the gauge invariance

lime (eversal

$$\boldsymbol{h}_{1}^{\perp}(\boldsymbol{SIDIS}) = -\boldsymbol{h}_{1}^{\perp}(\boldsymbol{DY})$$

Boer-Mulders

Sivers

$$f_{1T}^{\perp}(SIDIS) = -f_{1T}^{\perp}(DS)$$

Paris, September 7th-11th 2015

Q² vs x phase space at COMPASS

The phase spaces of the two processes overlap at COMPASS
 → Consistent extraction of TMD DPFs in the same region

Paris, September 7th-11th 2015

Sivers in DY range

Paris, September 7th-11th 2015

Hadron beam: Drell-Yan setup

Upgrades of the COMPASS spectrometer

CANERA recoil proton detector surrounding the 2.5m long LH2 target

ECALO

GPDs with Hard Exclusive γ and Meson Production

COMPASS-II 2016-17: with LH₂ target + RPD (phase 1) $\mu^{+\downarrow}$, $\mu^{-\uparrow}$ 160 GeV

- ✓ the t-slope of the DVCS and HEMP cross section
 → transverse distribution of partons
- ✓ the Beam Charge and Spin Sum and Difference → $Re T^{DVCS}$ and $\Im m T^{DVCS}$ for the GPD *H* determination
- ✓ Vector Meson $\rho^0, \rho^+, \omega, \Phi$
- ✓ Pseudo-saclar π^0

(Using the 2007-10 data: transv. polarized NH₃ target without RPD)

- 2014-2015: Transversely polarized DY
 - to check pseudo-universality $([f_{1T}^{\perp}(x,Q^2)]_{DY} \approx -[f_{1T}^{\perp}(x,Q^2)]_{SIDIS})$
- 2016-2017: Unpolarised DVCS/HVMP
 - (B slope and GPD H)
 - and unpolarised SIDIS on LH_2
 - $dn^h/(dN^\mu dz \, dp_T^2)$ i.e. p_T dependent multiplicities, and h_{1T}^\perp Boer-Mulders TMD PDF
- 2018 to be discussed having in hand the performances in the previous years

More in the FUTURE:

	physics item	key aspects of the measurement
Hadron	glueballs	280 GeV beam, higher intensity, π , K and \bar{p} separation
GPD	Е	transversely polarized proton target
SIDIS	h_1^d with same accuracy as h_1^u	transversely polarized deuteron target
	f_1^{\perp} evolution	100 GeV and transversely polarized proton target
DY	universality of TMD PDFs	higher statistics with transversely polarized proton target
	flavor separation	transversely polarized deuteron target
	test of the Lam-Tung relation	hydrogen target
	EMC effect in DY	different nuclear targets

Paris, September 7th-11th 2015

For the next 10 years

- before any collider is available,
- and complementary to Jlab 12 GeV

COMPASS@CERN can be a major player in **QCD** physics using its unique high energy both:

- hadron beam and
- positive and negative muon beams

Looking even further...a polarized leptonnucleon collider well be a mandatory tool

Thank You

Tananan R

H H

Serve Kerkerk

M

FRECOM

Results:

Year		
2005	$A^h_{Siv,d}$, $A^h_{Col,d}$	First ⁶ LiD data
2006	$A^h_{Siv,d}$, $A^h_{Col,d}$	Full ⁶ LiD statistics
2009	$A_{Siv,d}^{\pi^{\pm},K^{\pm},K^{0}_{S}}$, $A_{Col,d}^{\pi^{\pm},K^{\pm},K^{0}_{S}}$	Full ⁶ LiD statistics
2010	$A^h_{Siv,p}$, $A^h_{Col,p}$	2007 NH ₃ data
2012	$A_{UT,d}^{sin\phi_{RS}}$, $A_{UT,p}^{sin\phi_{RS}}$	Full 6LiD and NH ₃ statistics
2012	$A^h_{Siv,p}$, $A^h_{Col,p}$	Full NH ₃ statistics
2012	$A_{UT,d}^{sin(\phi_{ ho}-\phi_{S})}$, $A_{UT,p}^{sin(\phi_{ ho}-\phi_{S})}$	Exclusive ρ^0 production – Full 6LiD and NH_3 statistics
2013	$dn^h/(dN^\mu dzdp_T^2)$	Unpolarized multiplicities on d
2014	$A_{UU,d}^{\sin\phi_{h}}, A_{UU,d}^{\cos\phi_{h}}, A_{UU,d}^{\cos 2\phi_{h}}$ $A_{UT,p}^{\sin\phi_{s}}, A_{LT,p}^{\cos\phi_{s}}, A_{UT,p}^{\sin(2\phi_{\rho}-\phi_{s})}$	Unpol. azimuthal asymm.s Excl. ρ^0 production on NH ₃
2014	$A_{UU,d}^{\sin \phi_h}, A_{UU,d}^{\cos \phi_h}, A_{UU,d}^{\cos 2\phi_h}$ $A_{UT,p}^{\sin \phi_S}, A_{LT,p}^{\cos \phi_S}, A_{UT,p}^{\sin(2\phi_\rho - \phi_S)} \dots$ $A_{Siv,d}^{g}$	Unpol. azimuthal asymm.s Excl. ρ^0 production on NH ₃ preliminary

Paris, September 7th-11th 2015

POETIC VI

45

Chromodynamic lensing

Use SIDIS Sivers asymmetry data to constrain shape Use anomalous magnetic moments to constrain integral

 $f_{1T}^{\perp(0)q}(x,Q_L^2) = -L(x)E^q(x,0,0,Q_L^2)$

L(x) – Lensing function (from Burkart) E^q – GPD related to quark OAM

n-th moment of a TMD with respect to k_{\perp}

$$f_{1T}^{\perp(n)q}(x,Q^2) = \int d^2k_{\perp} \left(\frac{k_{\perp}^2}{2M^2}\right)^n f_{1T}^{\perp(0)q}(x,k_{\perp}^2,Q_L^2)$$

Paris, September 7th-11th 2015

Kinematic coverage

Kinematic coverage

0.004 < x < 0.3, 25<W²<200GeV² 0.023 < x < 0.4, 10<W²< 50GeV² 0.14 < x < 0.5, 4<W²< 10GeV²

Paris, September 7th-11th 2015

Other SSAs - proton data

Paris, September 7th-11th 2015

Other Transverse Target spin asymmetries on p

 $A_{LT}^{\cos(\phi_h - \phi_s)} \propto g_{1T}^q \otimes D_{1q}^h$, "Worm Gear" PDF g_{1T}^q : -(•)+ - -(•)+

Paris, September 7th–11th 2015

Other Transverse Target spin asymmetries on p

Paris, September 7th–11th 2015

Collins asymmetry on proton x > 0.032 region

charged kaons COMPASS and HERMES results

Paris, September 7th-11th 2015

Is correlation having an impact?

Paris, September 7th-11th 2015

Unpolarised Azimuthal Modulation

Huge azimuthal ϕ modulation on unpolrised target measured by EMC in 1987

 $d\sigma^{\ell p \to \ell' h X} = \sum_{q} f_q(x, Q^2) \otimes d\sigma^{\ell q \to \ell' q} \otimes D_q^h(z, Q^2)$ where, in collinear PM $d\sigma^{\ell q \to \ell' q} = \hat{s}^2 + \hat{u}^2 = x[1 + (1 - y)^2]$, i.e. no ϕ_h dependence. Taking into account the parton transverse momentum in the kinematics leads to:

 $\hat{s} = sx \left[1 - \frac{2k_{\perp}}{Q} \sqrt{1 - y} \cos \phi_h \right] + \sigma \left(\frac{k_{\perp}^2}{Q} \right) \ \hat{u} = sx(1 - y) \left[1 - \frac{2k_{\perp}}{Q\sqrt{1 - y}} \cos \phi_h \right] + \sigma \left(\frac{k_{\perp}^2}{Q} \right)$ Resulting in the $\cos \phi_h$ and $\cos 2\phi_h$ modulations observed in the azimuthal distributions

Paris, September 7th-11th 2015

SIDIS access to TMDs

 $\boldsymbol{\sigma}(\ell p \to \ell' h X) \sim q(x) \otimes \widehat{\boldsymbol{\sigma}}^{\gamma q \to q} \otimes D_q^h(z)$

ΓMDs

 x, \vec{k}_{\perp}

Hadron polarization

FFs

 (z, \vec{p}_{\perp})

Factorisation (Collins & Soper, Ji, Ma, Yuan, Qiu & Vogelsang, Collins & Metz...)

Paris, September 7th-11th 2015

Collins asymmetry on e^+e^-

Collins asymmetry on e^+e^-

 $\pi\pi \Rightarrow$ non-zero asymmetries, increase with z_1, z_2 $\pi K \Rightarrow$ asymmetries compatible, with zero KK \Rightarrow non-zero asymmetries, increase with z_1, z_2

BELLE

57

IFF asymmetry on e^+e^-

Paris, September 7th-11th 2015

$$\begin{aligned} \textbf{SIDIS}_{\sigma} \textbf{1h} & \textbf{x} - \textbf{Secction}_{1-\sin^{2}\theta\sin^{2}\varphi_{s}} \left[\frac{\alpha^{2}}{xyQ^{2}} \frac{y^{2}}{2(1-\varepsilon)} \left(1 + \frac{y^{2}}{2x} \right) \right] \times \left(F_{UU,T} + \varepsilon F_{UU,L} \right) \times \\ \left[1 + \cos\varphi_{h} \times \sqrt{2\varepsilon(1+\varepsilon)} A_{UU}^{\cos\varphi_{h}} + \cos(2\varphi_{h}) \times \varepsilon A_{UU}^{\cos(2\varphi_{h})} + \lambda \sin\varphi_{h} \times \sqrt{2\varepsilon(1-\varepsilon)} A_{LU}^{\sin\varphi_{h}} + \\ \frac{1 + \cos\varphi_{h} \times \sqrt{2\varepsilon(1+\varepsilon)} A_{UU}^{\sin\varphi_{h}} + \cos(2\varphi_{h}) \times \varepsilon A_{UU}^{\sin(\varphi_{h}-\varphi_{s})} + \lambda \sin\varphi_{h} \times \sqrt{2\varepsilon(1-\varepsilon)} A_{LU}^{\sin\varphi_{h}} + \\ \frac{1 + \cos\varphi_{h} \times \sqrt{2\varepsilon(1+\varepsilon)} A_{UU}^{\sin\varphi_{h}} + \cos(2\varphi_{h}) \times \varepsilon A_{UU}^{\sin(\varphi_{h}-\varphi_{s})} + \frac{1}{2}\sin\theta\sqrt{2\varepsilon(1+\varepsilon)} A_{UU}^{\sin\varphi_{h}} + \\ \frac{\varphi_{T}}{\sqrt{1-\sin^{2}\theta\sin^{2}\varphi_{s}}} = \frac{\sin\varphi_{s} \times \left(\cos\theta\sqrt{2\varepsilon(1+\varepsilon)} A_{UT}^{\sin(\varphi_{h}-\varphi_{s})} + \frac{1}{2}\sin\theta\sqrt{2\varepsilon(1+\varepsilon)} A_{UL}^{\sin\varphi_{h}} \right) + \\ \sin(2\varphi_{h} - \varphi_{s}) \times \left(\cos\theta\sqrt{2\varepsilon(1+\varepsilon)} A_{UT}^{\sin(2\varphi_{h}-\varphi_{s})} + \frac{1}{2}\sin\theta\varepsilon} A_{UL}^{\sin\varphi_{h}} \right) + \\ \sin(2\varphi_{h} - \varphi_{s}) \times \left(\cos\theta\sqrt{2\varepsilon(1-\varepsilon)} A_{UT}^{\cos(\varphi_{h}-\varphi_{s})} + \frac{1}{2}\sin\theta\varepsilon} A_{UL}^{\sin\varphi_{h}} \right) + \\ \sin(3\varphi_{h} - \varphi_{s}) \times \left(\cos\theta\sqrt{2\varepsilon(1-\varepsilon)} A_{UT}^{\cos(\varphi_{h}-\varphi_{s})} + \frac{1}{2}\sin\theta\sqrt{2\varepsilon(1-\varepsilon)} A_{UL}^{\cos\varphi_{h}} \right) + \\ \sin(3\varphi_{h} - \varphi_{s}) \times \left(\cos\theta\sqrt{2\varepsilon(1-\varepsilon)} A_{UT}^{\cos(\varphi_{h}-\varphi_{s})} + \frac{1}{2}\sin\theta\sqrt{2\varepsilon(1-\varepsilon)} A_{UL}^{\cos\varphi_{h}} \right) + \\ \cos(\varphi_{h} - \varphi_{s}) \times \left(\cos\theta\sqrt{2\varepsilon(1-\varepsilon)} A_{UT}^{\cos(\varphi_{h}-\varphi_{s})} + \frac{1}{2}\sin\theta\sqrt{2\varepsilon(1-\varepsilon)} A_{UL}^{\cos\varphi_{h}} \right) + \\ \cos(2\varphi_{h} - \varphi_{s}) \times \left(\cos\theta\sqrt{2\varepsilon(1-\varepsilon)} A_{UT}^{\cos(2\varphi_{h}-\varphi_{s})} + \cos(\varphi_{h} + \varphi_{h}) \times \left(\frac{1}{2}\sin\theta\sqrt{2\varepsilon(1-\varepsilon)} A_{UL}^{\cos\varphi_{h}} \right) \right] \\ \textbf{Paris, September 7^{th} - 11^{th} 2015} \qquad \textbf{POETIC VI} \qquad \textbf{59}$$

Longitudinal modulations

Paris, September 7th-11th 2015

The asymmetries

The asymmetries are:

$$A_{U(L),T}^{w(\phi_{h},\phi_{S})}(x,z,p_{T};Q^{2}) = \frac{F_{U(L),T}^{w(\phi_{h},\phi_{S})}}{F_{UU,T} + \varepsilon F_{UU,L}}$$

When we measure on 1D

$$A_{U(L),T}^{w(\phi_{h},\phi_{S})}(x) = \frac{\int_{Q_{min}}^{Q_{max}^{2}} dQ^{2} \int_{Z_{min}}^{Z_{max}} dz \int_{p_{T,min}}^{p_{T,max}} d^{2}\vec{p}_{T} F_{U(L),T}^{w(\phi_{h},\phi_{S})}}{\int_{Q_{min}}^{Q_{max}^{2}} dQ^{2} \int_{Z_{min}}^{Z_{max}} dz \int_{p_{T,min}}^{p_{T,max}} d^{2}\vec{p}_{T} (F_{UU,T} + \varepsilon F_{UU,L})}$$

Ed. Berger criterion (separation of CFR & TFR)

The typical hadronic correlation length in rapidity is

 $\Delta y_h \simeq 2$

Paris, September 7th-11th 2015

if the dynamics of quark fragmentation is to be studied independently of "contamination" from target fragmentation, it is necessary that $Y \gtrsim 4$, or, equivalently, that

$$W_X = \left[\frac{Q^2(1-x)}{x}\right]^{1/2} \gtrsim 7.4 \text{GeV}.$$
 (17)

If the inequality Eq. (17) is satisfied, it should be possible to measure fragmentation functions $D(z, Q^2)$ over essentially the full range of z, 0 < z < 1. Somewhat smaller values of W_X may be adequate if attention is restricted to the large z region. As Y is increased above 2, or

$$W_X \gtrsim 3 \text{ GeV},$$
 (18)

the quark and target fragmentation regions begin to separate. As long as $Y \gtrsim 2$, the hadrons with the largest values of z are most likely quark fragments. Data¹⁴ from $e^+e^- \rightarrow h X$ show that a distinct function D(z) may have developed for $z \gtrsim 0.5$ at W = 3 GeV. The region extends to $z \simeq 0.2$ for W = 4.8 GeV, and to $z \simeq 0.1$ for W = 7.4 GeV. For z > 0.3, fragmentation functions have been obtained from data¹⁵ on $ep \rightarrow e'\pi^{\pm} X$ at E = 11.5 GeV, with $3 < W_X < 4$ GeV.

Statistical correlations

charged pions also available for charged hadrons charged kaons have to be taken into account

Paris, September 7th-11th 2015

Mean values

Paris, September 7th-11th 2015

Collins asymmetry on deuteron

Paris, September 7th-11th 2015

The Collins mechanism

Collins angle $\mathbf{k} \times \mathbf{P}_h \cdot \mathbf{S}_T \propto \cos\left(\frac{\pi}{2} - \phi\right) = \sin\phi$ transverse motion of hadron

spin analyzer of fragmenting quark single-spin asymmetry \rightarrow convolution $A_{UT}^{\sin(\phi)} \propto \left[h_1^q \otimes H_1^{\perp q \rightarrow h}\right]$ TMD factorization

The Di-hadron Fragm. Funct. mechanism

 $\begin{aligned} \mathbf{P}_h \times \mathbf{R}_T \cdot \mathbf{S}'_T &\propto & \cos(\phi_{\mathbf{S}'_T} - (\phi_{R_T} + \pi/2)) \\ &= & \cos(\pi - \phi_S - (\phi_{R_T} + \pi/2)) \\ &= & \sin(\phi_{R_T} + \phi_S) \end{aligned}$ azimuthal orientation of hadron pair

spin analyzer of fragmenting quark single-spin asymmetry \rightarrow product $A_{UT}^{\sin(\phi_R + \phi_S)} \propto h_1^q(x) H_1^{\triangleleft q \rightarrow h_1 h_2}(z, R_T^2)$ Radici, Jakob, Bianconi PR D65 (02); Bacchetta, Radici, PR D67 (03) collinear factorization evolution equations understood

Ceccopieri, Radici, Bacchetta, P.L. B650 (07)

2h asymmetries on d

$$A_{UT}^{\sin(\phi_R + \phi_S - \pi)} = \frac{\sum_q e_q^2 h_1^q(x) H_{q \to h_1 h_2}^{\measuredangle} \left(z, \mathcal{M}_{h_1 h_2}^2 \right)}{\sum_q e_q^2 q(x) D_q^{h_1 h_2} \left(z, \mathcal{M}_{h_1 h_2}^2 \right)}$$

Paris, September 7th-11th 2015

Sivers asymmetry on deuteron

PLB 673 (2009) 127

$$f_{1T,u}^{\perp} \approx -f_{1T,d}^{\perp}$$

Paris, September 7th-11th 2015