Latest Results from the COMPASS Experiment

M. Stolarski LIP

On behalf of the COMPASS Collaboration

21-X-2014

Outline

- COMPASS @ CERN
- 2 Longitudinal Structure of the Nucleon
- 3 Transverse Structure of the Nucleon
- Present & Future: Drell-Yan
- 5 Present & Future: GPDs
- 6 Summary

COMPASS at CERN

COMPASS Spectrometer 2002-2012

COLLABORATION

- about 210 physicists
- 27 institutes

DETECTOR

- two stage spectrometer
- 60 m length
- about 350 detector planes

POLARIZED TARGET

- ⁶LiD target (NH₃)
- 2-3 cells (120 cm total length)
- \pm 50% (85%) polarization
- pol. reversal every 8h-24h

POLARIZED BEAM

- ullet μ^+ at 160 GeV/c
- polarization –80 %

FEATURES

- angular acceptance: ± 70 mrad (± 180 mrad from 2006)
- track reconstruction:p > 0.5 GeV/c
- identification h, e, μ : calorimeters and muon filters
- identification: π , K, p (RICH) p > 2, 9, 18 GeV/c respectively

New Results on g_1^p

- In 2011 COMPASS collected data with 200 GeV/c muon beam
- The increased beam energy (160 $GeV/c \to 200~GeV/c$) allows to access lower region of x for $Q^2>1~(GeV/c)^2$
- COMPASS extracted data in x, Q^2 grid for both A_1^p and g_1^p
- Good agreement is seen between 2007 and 2011 data
- Next step: SIDIS asymmetries for $h^{\pm}, K^{\pm}, \pi^{\pm}$

Test of the Bjorken Sum Rule

- $g_1^{NS}(x, Q^2) = g_1^p(x, Q^2) g_1^d(x, Q^2)$
- $g_1^{NS}(x,Q^2)$ is interesting because its Q^2 dependence decouples from the singlet and gluon densities
- $\int_0^1 g_1^{NS}(x,Q^2) = \Gamma_1^{NS} = \frac{1}{6} \frac{g_A}{g_V} C_1^{NS}(Q^2)$, where $C_1^{NS}(Q^2)$ has been calculated in pQCD up to $\alpha_s^3(Q^2)$
- $rac{g_A}{g_V}$ can be obtained from neutron beta decay, $rac{g_A}{g_V}=1.2694\pm0.0028$

COMPASS results $\frac{g_A}{g_V} = 1.219 \pm 0.052 \pm 0.095$

M. Stolarski (LIP) SPIN 2014 21-X-2014

NLO QCD fit of $g_1^{p,d}$ - Input

Limited (x, Q^2) coverage, as only fixed target DIS experiments were performed so far.

NLO QCD fit of $g_1^{p,d}$ - Results

- Fit is performed in \bar{MS} scheme
- $\chi^2/ndf \approx 1.05$
- \bullet $\Delta g/g$ is not constrained by the fit, although returned statistical errors are small
- Clear impact of poor $\Delta g/g$ knowledge on $\Delta \Sigma$

M. Stolarski (LIP) SPIN 2014 21-X-2014

$\Delta g/g$ from All- $p_{\rm T}$ Method

• Contribution from 3 processes to the observed asymmetry is assumed:

- $\bullet A_{II}^h(x_{Bi}) = R_{PGF} a_{II}^{PGF} \Delta g/g(x_G) + R_{LP} DA_1^{LO}(x_{Bi}) + R_{QCDC} a_{II}^{QCDC} A_1^{LO}(x_C)$
 - the fraction of the processes (R_i) and partonic cross-section asymmetries $(a_{i,l}^i)$ are obtained from MC and parametrized by NN
- Idea: larger $p_{\rm T} o$ larger $R_{PGF} o$ larger sensitivity to $\Delta g/g$

PGF

M. Stolarski (LIP) **SPIN 2014** 21-X-2014

$\Delta g/g$ from All- p_{T} Method

- Reanalysis of data used for PLB 718 (2013) 922, now with a different method
- ullet Presently, the A_1^{LO} and $\Delta g/g$ are extracted simultaneously from the same data set
 - ullet low $p_{
 m T}$ data are needed as they are clean source of LP
 - certain systematic uncertainties are reduced w.r.t. previous method
 - some consistency tests of the model used for estimate of Rs, a_{LL}^is are possible.
- $\Delta g/g = 0.113 \pm 0.038 \pm 0.035$, $\langle \mu^2 \rangle = 3 \text{ (GeV/c)}^2$, $\langle x_g \rangle = 0.10$
- In the measured x_g range $\Delta g/g$ maybe positive, similar conclusion is reached in recent DSS fits, which include RHIC data.

 \rightarrow see talk by K. Kurek for more details

A_{LL} from Low Q^2 , high- p_T Data

- ullet The same idea as before: larger $p_{
 m T}$ o larger R_{PGF} o larger sensitivity to $\Delta g/g$
- ullet In the low Q^2 region there is an additional complication: resolved photon processes
- NLO calculations in collinear pQCD by M. Stratmann, B. J?er and W. Vogelsang (EPJC 44 (2005) 533)

M. Stolarski (LIP) SPIN 2014 21-X-2014 11 / 35

A_{LL} from Low Q^2 , high- p_T Data cont.

- COMPASS preliminary $A_{LL}s$ are compared with various $\Delta g/g$ hypotheses
- Disagreement is seen between proton data and theory
- Possibly more resummations needed in the theory

12 / 35

M. Stolarski (LIP) SPIN 2014 21-X-2014

ΔS Puzzle

- ullet ΔS from fits of g_1 and SIDIS π is negative in the whole x region
- However, SIDIS K data prefer zero or positive value at moderate x values
- Impact of Kaon data strongly dependent upon the choice of strange FF D_S^K
- LSS group reported that problem disappears if HKNS FF set is used instead of DSS.

M. Stolarski (LIP) SPIN 2014 21-X-2014 13 / 35

Charged Hadron Multiplicities

- Hadron multiplicities dN_h/dN_{DIS} , give access to FF
- In LO: $M^i(x, Q^2, z) = \frac{\sum_q e_q^2 q(x, Q^2) D_q^i(z, Q^2)}{\sum_q e_q^2 q(x, Q^2)}$
- COMPASS extracted preliminary charged hadrons, π and K multiplicities in grid of (x, y, z)

 \rightarrow see talk by F. Kunne for more details

Kaon Multiplicity Sum

- Kaon multiplicity sum gives an easy access to $S \int D_S^K(z) dz$
- For the iso-scalar target:
- $5M^{K^++K^-} \approx \int D_Q^K + S/Q \int D_S^K$, where:

•
$$D_Q^K = 4D_u^K + D_d^K$$

•
$$Q = u + \bar{u} + d + \bar{d}$$
: $S = s + \bar{s}$

- High x low contribution of strange quarks \to access to D_Q^K
- Low x- influence of $S \int D_S^K$ should be seen
- Problem: COMPASS and HERMES data have different shape of the $M^{K^++K^-}$ distribution as well as results do not agree for $x \approx 0.1 0.3$

15 / 35

M. Stolarski (LIP) SPIN 2014 21-X-2014

A_1^p at Low Values of x and Q^2

- Low x , high parton densities
- COMPASS (fixed target) strong correlation between x and Q^2
- $Q^2 < 1 \text{ GeV/c}$ non perturbative region
- Some models that allow a smooth extrapolation to the low- Q^2 and high- Q^2 regions (J. Kwiecinski et al., B.I. Ermolaev et al.) can be confronted with data
- More than 10 fold increase of the precision w.r.t. previous experiments
- Clear non-zero signal is seen for the proton data even at low x, contrary to the deuteron data, where the result is consistent with zero.

M. Stolarski (LIP) SPIN 2014 21-X-2014 16 / 35

Beyond the Longitudinal Nucleon Structure

Sivers Effect

- ullet Sivers effect related with partons intrinsic k_T
- COMPASS, hep-ex/1408.4405, (subm. PLB)
- Non zero effect observed for π^+ and K^+

Collins Effect

- ullet Collins effect related with fragmentation p_\perp
- COMPASS, hep-ex/1408.4405 (subm. PLB)
- Non zero effect observed for π^{\pm}
- More statistic needed for kaons, to make sound conclusions

Gluon Sivers Measurement

- Idea & analysis method similar as in $\Delta g/g$ High- $p_{\rm T}$:
 - three processes are considered LP,QCDC, PGF
 - select high-pT sample in order to increase contribution from PGF.
 - extract simultaneously the azimuthal asymmetries for the 3 processes
- Data 2003-2004 deuteron target
- Cuts: $Q^2 > 1 \text{ GeV/c}$, $p_{T,1,(2)} > 0.7 (0.4) \text{ GeV/c}$, $z_{1,2} > 0.1$
- Sivers effect for gluon as well as other asymmetries are compatible with zero, within experimental errors

→ see talk by K. Kurek for more details

2h Asymmetries

- Two hadron asymmetry gives access to the interference FF
- They were extracted for h^+h^- pairs as well as for $\pi^+\pi^-, K^+K^-, \pi^+K^-, K^-\pi^+$
- Good agreement with the theory predictions

21 / 35

→ See talk

M. Stolarski (LIP) SPIN 2014 21-X-2014

Extraction of Transversity h_1

- ullet Ingredients: 2h $\pi^+\pi^-$ asymmetries for proton and deuteron data
- Certain symmetry assumptions about dihadron FF

•
$$D_1^q = D_1^{\bar{q}}$$

•
$$H_1^{\perp u} = -H_1^{\perp d} = -H_1^{\perp \bar{u}} = H_1^{\perp \bar{d}}$$

•
$$H_1^{\perp s,\bar{s},c,\bar{c}}=0$$

- $h_1^d = h_1^{u_v} + h_1^{d_v}$
- $\bullet \ h_1^p = h_1^{u_v} 1/4h_1^{d_v}$
- Extracted results from 2h case are compared with fit to the 1h Collins asymmetry

→ see talk by G. Sbrizzai for more details

2h vs 1h Asymmetries

- Clear correlation between 2h asymmetry and Collins asymmetry is observed
- ullet More general cross-section formula was written lp
 ightarrow 2h + X interaction
- ullet It is interesting to study the asymmetries as a function of $\Delta\Phi$ $(\phi_h^+ \phi_h^-)$
- \bullet It turns out that one can predict 2h asymmetry from the 1h Collins asymmetry. Expected ratio approx 4/ π
- → see talk by F. Bradamante for more details

Beyond Sivers & Collins I

- ullet Six other A_{LT} and A_{UT} asymmetries were measured
- Different combination of PDF, TMD and FF involved
- Asymmetries comparable with 0, but $A_{UT}^{\sin\phi_S}$
- $A_{UT}^{sin\phi_S}$ related to Sivers $f_{1\perp}$ and transversity h_1

Beyond Sivers & Collins II

- Unpolarised azimuthal asymmetries were also measured
- $A_{UU}^{\cos\phi_h}$ related to Boer-Mulders PDF and Cahn effect (i.e. kinematic effect due quark k_T)
- $A_{UU}^{cos2\phi_h}$ related to Boer-Mulders PDF and Collins FF
- Sizable asymmetries observed
- Non-trivial dependence in all variables!
- These asymmetries were also extracted in 3D

Transverse Momentum Dependent Multiplicities

- ullet Both intrinsic k_T of quarks in the nucleon as well as p_\perp of the fragmentation needs to be better understood
- Hadron multiplicities were extracted in 4D (x, Q^2, z, p_T^2) binning
- Main features:
 - the 2-exp fits give reasonable fits to the data,
 - 2nd exp become dominant event as low as $p_{\mathrm{T}}^2 \approx 0.6 \; \mathrm{GeV^2}$

→ see talk by N. Makke for more details

M. Stolarski (LIP) SPIN 2014 21-X-2014 26 / 35

Transverse Momentum Dependent Multiplicities cont.

• New results without the arbitrary normalization:

- ullet COMPASS has already published $p_{
 m T}^2$ dependent multiplicities from 2004 data in EPJC 73 (2013) 2531
- However, issues in this analysis were detected, which can affect the overall x, y, z normalization of multiplicities up to 40%, but the shape as a function of $\rho_{\rm T}^2$ are not significantly affected. Erratum in preparation

Multi-Dimensional Analyses

- Rapid theory advances asks for multidimensional analyses...
- ullet Example: Sivers effect and the matter of TMDs Q^2 evolution

→ see talk by B. Parsamyan for more details

M. Stolarski (LIP)

Polarized Drell-Yan Measurement @ COMPASS

- Polarized DY can give complementary information about TMDs to the SIDIS case
- It is expected that e.g. Sivers PDF changes sign in DY w.r.t SIDIS case
- Unpolarised studies will also be performed,
 - Boer-Mulders function will be extracted
 - DY will be measured on different Nuclear targets as well as different (π^- , K^-) beams
- COMPASS will measure DY events for $M_{\mu^+\mu^-} \in (4-9) \text{ GeV/c}^2$
- Large hadron absorber installed in the spectrometer

- → see talk by B. Parsamyan for more details (polarised)
- → see talk by W.-C. Chang for more details (unpolarised)

Expected Experimental Errors and Theory Expectations

- COMPASS measurement is in valence region, non zero asymmetries are expected
- \bullet For example: the expected theory predictions (for Sivers) are several σ away from the zero

M. Stolarski (LIP) SPIN 2014 21-X-2014 30 / 35

Polarized Drell-Yan Measurement @ COMPASS

- After the 2 years shut down for LHC, CERN accelerators restart their operation
- 1st beam already in COMPASS detectors
- DY pilot run will continue until Dec 2014
- Next year data taking fully dedicated to DY studies of TMDs

GDPs and DVCS

- GPDs: also give access to 3-D image of partons inside hadrons
 - ullet 4 chiral-even GPDs $H^{q,g}$, $\tilde{H}^{q,g}$, $E^{q,g}$, $\tilde{E}^{q,g}$
 - 4 chiral-odd GPDs H_T^q , \tilde{H}_T^q , E_T^q , \tilde{E}_T^q
- Golden channel to study (some of) GPDs is DVCS $\mu p \to \mu' p \gamma$
- COMPASS DVCS measurement on LH target is foreseen for 2016 and 2017
- Short test runs were performed in 2009 and 2012
 - clear DVCS signal over BH background visible at high x
 - $B \sim 2\langle r_p \rangle^2$ can be extracted from 2012 test

32 / 35

→ see talk by A. Ferrero for more details

GDPs and Hard Exclusive Meson Production

- GPDs can also be studied in Hard Exclusive meson production
- Different modulations of the x-section are sensitive to various combinations of GPDs, e.g. Non zero $A^{\sin\phi_5}$ means that $H_T \neq 0$
- Different vector meson are sensitive to different combinations of parton flavors
- ullet Both single and double spin asymmetries were studied in COMPASS for ho meson
- Most of the results are well compatible with zero

33 / 35

→ see talk by J. ter Wolbeek for more details

COMPASS HADRON Program

- COMPASS has rich program to study hadron-hadron interactions
- There is a lot of new results, but they are outside of the scope of this conference
- ullet Highlight: Primakoff reaction pion polarizability measurement, $lpha_\pi$
 - $\pi^- + p \rightarrow \pi^- p + \gamma$
 - studies of the pion polarizability as a crucial test of chiral perturbative theory
- COMPASS result from 2009 data:

$$\alpha_{\pi} = (2.0 \pm 0.6_{\rm stat.} \pm 0.7_{\rm syst.}) \times 10^{-4} \text{fm}^3$$

Summary of COMPASS new Results

- COMPASS Longitudinal data beginning of the end
 - some new data
 - more physics interpretations
 - ullet currently Δg is not constrained by g_1 scaling violation
 - hints that $\Delta g/g$ is positive in the $x_g \in (0.05-0.28)$ from direct (model dependent) PGF measurements
- COMPASS Transverse data end of the beginning
 - a lot of new data, more data expected
 - more and more physics interpretations
 - interplay of 1h and 2h asymmetries
 - extraction of transversity
 - both GPDs and TMDS are accessed are observed
- After a 2 years shutdown COMPASS restarted data taking!
- Main goal for 2014-2015: polarised Drell-Yan studies of TMDs