Access to Generalized Parton Distributions at COMPASS

Wolf-Dieter Nowak
University of Freiburg, Germany

DIFFRACTION 2014, Primosten, Croatia, Sept. 10-16, 2014

Outline

- The COMPASS experiment
- Deeply virtual Compton Scattering [DVCS]:
 - * Cross section -> Transverse size of the nucleon
 - * Asymmetries -> Generalized Parton Distributions [GPDs]
- Results: exclusive ρ^0 production: 2007 (6 LiD) /2010 (NH₃)
- Interpretation within phenomenological Goloskokov-Kroll model -> evidence for existence of transverse GPDs
- >2016/17: unpolarized LH target: DVCS and HEMP
 (hard exclusive meson production) -> constrain GPD H
- >2018: to constrain GPD E: need new transversely polarized target & recoil proton detection

Unique Experimental Conditions at COMPASS

- High-energy 100-200 GeV/c (tertiary) muon beam (CERN)
- Natural high beam polarization: O(0.8); pos.[neg.] for mu-[+]
- 2007(⁶LiD) & 2010(NH₃): transversely polarized d & p targets
- 2009 & 2012: DVCS test runs (LH target & small RPD)
- > 2015: unpolarized liquid-hydrogen (LH) target (no dilution)
- > 2015: large recoil-proton detector (RPD) around target
- Large acceptance; 2-stage tracking and calorimetry, PID

Transverse size of the nucleon vs. Bjorken-x

→ Compass covers low-x to medium-x region

Exclusive Processes: Access to GPDs

- For spin-1/2 target 4 chiral-even
 (= parton-helicity conserving)
 leading-twist parton GPDs: H,E,H,E
 - > H,H conserve nucleon helicity,
 - > E,E involve nucleon helicity flip
- Different final states are sensitive to different (combinations of) GPDs:
 - $> DVCS(\gamma) \rightarrow H_{,E}, \tilde{H}, \tilde{E}$
 - > Vector mesons $(\rho, \omega, \phi) \rightarrow H, E$
 - > Pseudoscalar mesons $(\pi, \eta) \rightarrow H, E$
- Also: chiral-odd (transverse')(= parton-helicity flip) GPDs:

$$H_{\mathsf{T}} = \widetilde{E_{\mathsf{T}}} = 2\widetilde{H_{\mathsf{T}}} + E_{\mathsf{T}}$$

> accessible e.g. in ρ production

Interpretation of GPDs

Elastic Form Factors

transverse position of partons

Parton Distribution Functions (PDFs)

longitudinal momentum of partons

Correlation between longitudinal momentum and transverse position

- GPDs include Form Factors and Parton Distribution Functions as moments and forward limits, resp.
- GPDs yield a multidimensional description of nucleon structure (longitudinal momentum vs. transverse position)
 - → NUCLEON TOMOGRAPHY
- GPDs offer access to quark total angular momentum through the Ji relation (in principle also for gluons):

$$J_{q} = \lim_{t \to 0} \int_{-1}^{1} dx \, x \left[H_{q}(x, \xi, \xi) + E_{q}(x, \xi, \xi) \right]$$
[X. Ji, Phys. Rev. Lett. 78 (1997) 610]

2010:Exclusive ρ^0 production: event selection

$$\mu + \mathbf{N}^{\uparrow} \rightarrow \mu' + \mathbf{N}' + \rho^{0}$$
$$\rho^{0} \rightarrow \pi^{+} + \pi^{-}$$

▶ Peak at ρ^0 mass $\sim 0.775 \text{ GeV}/c^2$

ightharpoonup Signature for exclusivity $E_{miss} \sim 0$

$$E_{\text{miss}} = \frac{(p+q-\rho)^2 - p^2}{2 \cdot M_p} = \frac{M_X^2 - M_p^2}{2 \cdot M_p}$$

Hard exclusive ρ^0 production

- \blacktriangleright Factorisation valid for σ_I
- ▶ Leading twist term σ_{00}^{+-} sensitive to

$$A_{\text{UT}}^{\sin(\phi-\phi_s)} = -\frac{\operatorname{Im}(\sigma_{++}^{+-} + \varepsilon \sigma_{00}^{+-})}{\sigma_0}$$
$$\operatorname{Im}\frac{d\sigma_{00}^{+-}}{dt} \sim \operatorname{Im}(\mathcal{E}^{\star}\mathcal{H})$$

 $ightharpoonup \mathcal{E} \ \& \ \mathcal{H}$ are convolution integrals of hard scattering kernels and the $\rho^{\bar{0}}$ distribution amplitude with GPDs E & H where:

$$E_{\rho^0} = \frac{1}{\sqrt{2}}(\frac{2}{3}E^u + \frac{1}{3}E^d + \frac{3}{8}E^g)$$

Constrain GPD E

Cross section of hard exclusive ho^0 production

target

Eur.Phys.J.C 41 (2005)

i,i = target nucleon helicity

$$\left[\frac{\alpha_{\rm em}}{8\pi^3} \frac{y^2}{1-\varepsilon} \frac{1-x_B}{x_B} \frac{1}{Q^2}\right]^{-1} \frac{d\sigma}{dx_B dQ^2 d\phi d\psi} = \frac{1}{2} \left(\sigma_{++}^{++} + \sigma_{++}^{--}\right) + \varepsilon \sigma_{00}^{++} - \varepsilon \cos(2\phi) \operatorname{Re} \sigma_{+-}^{++} \right.$$

$$\left. -\sqrt{\varepsilon(1+\varepsilon)} \cos\phi \operatorname{Re} \left(\sigma_{+0}^{++} + \sigma_{+0}^{--}\right) - P_\ell \sqrt{\varepsilon(1-\varepsilon)} \sin\phi \operatorname{Im} \left(\sigma_{+0}^{++} + \sigma_{+0}^{--}\right) \right.$$

$$\left. -S_L \left[\varepsilon \sin(2\phi) \operatorname{Im} \sigma_{+-}^{++} + \sqrt{\varepsilon(1+\varepsilon)} \sin\phi \operatorname{Im} \left(\sigma_{+0}^{++} - \sigma_{+0}^{--}\right)\right] \right.$$

$$\left. + S_L P_\ell \left[\sqrt{1-\varepsilon^2} \frac{1}{2} \left(\sigma_{++}^{++} - \sigma_{-+}^{--}\right) - \sqrt{\varepsilon(1-\varepsilon)} \cos\phi \operatorname{Re} \left(\sigma_{+0}^{++} - \sigma_{+0}^{--}\right)\right] \right.$$

$$\left. + S_L P_\ell \left[\sin(\phi-\phi_S) \operatorname{Im} \left(\sigma_{++}^{+-} + \varepsilon \sigma_{00}^{+-}\right) + \frac{\varepsilon}{2} \sin(\phi+\phi_S) \operatorname{Im} \sigma_{+-}^{+-} + \frac{\varepsilon}{2} \sin(3\phi-\phi_S) \operatorname{Im} \sigma_{+-}^{-+} \right.$$

$$\left. + \sqrt{\varepsilon(1+\varepsilon)} \sin\phi_S \operatorname{Im} \sigma_{+0}^{+-} + \sqrt{\varepsilon(1+\varepsilon)} \sin(2\phi-\phi_S) \operatorname{Im} \sigma_{+0}^{-+} \right.$$

$$\left. + \sqrt{\varepsilon(1+\varepsilon)} \sin\phi_S \operatorname{Im} \sigma_{+0}^{+-} + \sqrt{\varepsilon(1+\varepsilon)} \sin(2\phi-\phi_S) \operatorname{Im} \sigma_{+0}^{-+} \right.$$

$$\left. + \sqrt{\varepsilon(1+\varepsilon)} \cos(\phi-\phi_S) \operatorname{Re} \sigma_{++}^{--} - \sqrt{\varepsilon(1-\varepsilon)} \cos\phi_S \operatorname{Re} \sigma_{+0}^{+-} \right.$$

$$\left. - \sqrt{\varepsilon(1-\varepsilon)} \cos(2\phi-\phi_S) \operatorname{Re} \sigma_{++}^{-+} \right.$$

$$\left. - \sqrt{\varepsilon(1-\varepsilon)} \cos(2\phi-\phi_S) \operatorname{Re} \sigma_{+0}^{-+} \right.$$

$$\left. - \sqrt{\varepsilon(1-\varepsilon)} \cos(2\phi-\phi_S) \operatorname{Re} \sigma_{+$$

Mean asymmetries - NH₃ target (2007&2010)

Asymmetry A_{UT,LT} - NH₃ target (2007&2010) as a function of x_{Bi}

 Asymmetry extraction using a 2D binned maximum likelihood fit after subtracting the SIDIS background

Comparison with a phenomenological GPD-based model

- phenomenological 'handbag' approach
- ▶ based on k_⊥ factorisation
- includes twist-3 meson wave functions
- lacktriangle includes contributions from $\gamma_{
 m I}^*$ and $\gamma_{
 m T}^*$

Goloskokov & Kroll Eur.Phys.J.C 59 (2009)

$$\sigma_{\mu\sigma}^{\nu\lambda} = \sum \mathcal{M}_{\mu'\nu',\mu\nu}^* \mathcal{M}_{\mu'\nu',\sigma\lambda}$$

$$\begin{split} A_{\mathsf{UT}}^{\mathsf{sin}(\phi-\phi_{\mathsf{s}})}\sigma_{0} &= -2\mathrm{Im}\left[\epsilon\mathcal{M}_{0-,0+}^{*}\mathcal{M}_{0+,0+} + \mathcal{M}_{+-,++}^{*}\mathcal{M}_{++,++} + \frac{1}{2}\mathcal{M}_{0-,++}^{*}\mathcal{M}_{0+,++}\right] \\ A_{\mathsf{UT}}^{\mathsf{sin}(\phi_{\mathsf{s}})}\sigma_{0} &= -\mathrm{Im}\left[\mathcal{M}_{0-,++}^{*}\mathcal{M}_{0+,0+} - \mathcal{M}_{0+,++}^{*}\mathcal{M}_{0-,0+}\right] \\ A_{\mathsf{UT}}^{\mathsf{sin}(2\phi-\phi_{\mathsf{s}})}\sigma_{0} &= -\mathrm{Im}\left[\mathcal{M}_{0+,++}^{*}\mathcal{M}_{0-,0+}\right] \\ A_{\mathsf{LT}}^{\mathsf{cos}(\phi_{\mathsf{s}})}\sigma_{0} &= -\mathrm{Re}\left[\mathcal{M}_{0-,++}^{*}\mathcal{M}_{0+,0+} - \mathcal{M}_{0+,++}^{*}\mathcal{M}_{0-,0+}\right] \\ &= -\mathrm{Re}\left[\mathcal{M}_{0-,++}^{*}\mathcal{M}_{0+,++}^{*}\mathcal{M}_{0-,0+}\right] \\ &= -\mathrm{Re}\left[\mathcal{M}_{0-,++}^{*}\mathcal{M}_$$

 $\mathcal{M}_{\delta\gamma,\beta\alpha}$ = helicity amplitudes $\alpha = \text{initial-state proton helicity}$ $\beta = \text{virtual-photon helicity}$ $\gamma = \text{final-state proton helicity}$ $\delta = \text{meson helicity}$

Comparison with a phenomenological GPD-based model

Up to now mainly used to describe DVCS and HEMP: chiral-even GPDs

$$\gamma_L^* \to \rho_L^0$$
 $\mathcal{M}_{0+,0+} \sim H$; $\mathcal{M}_{0-,0+} \sim E$ dominant $\gamma_T^* \to \rho_T^0$ $\mathcal{M}_{++,++} \sim H$; $\mathcal{M}_{+-,++} \sim E$ suppressed

Recently introduced: chiral-odd (transverse) GPDs

$$\gamma_T^* \to \rho_L^0$$
 $\mathcal{M}_{0-,++} \sim H_T$; $\mathcal{M}_{0+,++} \sim \bar{E}_T = 2\tilde{H}_T + E_T$

 $\gamma_L^* \to \rho_T^0$, $\gamma_T^* \to \rho_{-T}^0$ known to be suppressed, neglected in the model

 $A_{\rm UT,p}^{\sin(\phi_S)} =$ -0.019 \pm 0.008 \pm 0.003 evidence for existence of chiral-odd GPD H_T

Asymmetry $A_{UT,p}$ - NH_3 target (2007&2010)

COMPASS proton
Phys.Lett. B731 (2014) 96
arXiv:1310.1454

- Blue line: Model from Goloskokov and Kroll
- Predictions for COMPASS kinematic

$$W = 8.1 \text{ GeV}/c^2$$
,
 $p_T^2 = 0.2 \text{ (GeV}/c)^2$,
 $Q^2 = 2.2 \text{ (GeV}/c)^2$

DVCS at COMPASS: Monte Carlo Simulation

DVCS at COMPASS: 2009 test run data

Test runs in 2009 & 2012 with 40 cm long target & small recoil detector:

3 x-Bjorken regions -> indication for DVCS signal

DVCS at COMPASS: How to constrain GPDs?

- Unpolarized beam: Constrain GPD H (2016-2017)
 - Sum of cross sections: imaginary part of Compton Form Factor
 - Difference of cross sections: real part of Compton Form Factor

$$\mathcal{D}_{cs,\upsilon} \equiv d\sigma(\mu^{+\downarrow}) - d\sigma(\mu^{-\uparrow}) \propto \begin{bmatrix} c_0^{Int} + c_1^{Int} \cos \phi \\ 0 \end{bmatrix} \text{ and } c_{0,1}^{Int} \sim F_1 \operatorname{Re} \mathcal{H}$$

$$\mathcal{S}_{cs,\upsilon} \equiv d\sigma(\mu^{+\downarrow}) + d\sigma(\mu^{-\uparrow}) \propto \begin{bmatrix} d\sigma^{BH} + c_0^{DVCS} + K.s_1^{Int} \sin \phi \\ 0 \end{bmatrix} \text{ and } s_1^{Int} \sim F_1 \operatorname{Im} \mathcal{H}$$

Transversely polarized target: Access GPD E (> 2018)
 (addendum to proposal required)

$$\mathcal{D}_{CS,T} = d\sigma_T (\mu^{+\downarrow}) - d\sigma_T (\mu^{-\uparrow})$$

$$\propto Im(F_2 \mathcal{H} - F_1 \mathcal{E}) \sin(\phi - \phi_S) \cos \phi$$

DVCS cross section: transverse size of nucleon

$$S_{CS,U} \equiv d\sigma^{\stackrel{+}{\leftarrow}} + d\sigma^{\stackrel{-}{\rightarrow}} = 2(d\sigma^{BH} + d\sigma^{DVCS}_{unpol} + e_{\mu}P_{\mu}\text{Im }I),$$

$$\frac{d\sigma_{unpol}^{DVCS}}{dt} \propto \exp(-B|t|)$$

COMPASS expected results (2016+2017):

- 40 weeks of data,
- 2.5 m LH target

→ Transverse size of the nucleon as a function of Bjorken-x

Measure difference of DVCS cross sections

$$D_{CS,U} = d\sigma(\mu^{+}) - d\sigma(\mu^{-}) \propto P_{\mu} d\sigma_{pol}^{DVCS} + e_{\mu} \operatorname{Re}(I) \propto c_0^{Int} + c_1^{Int} \cos\phi$$

$$c_{0,1} \propto \operatorname{Re}(F_1 H(\xi, t))$$

COMPASS expected results (2016+2017):

40 weeks of data, 2.5 m LH target, 10% global efficiency

21

DVCS with a transversely polarized Target

> 2018: 2 "years" data taking; E=160 GeV/c;10% efficiency; (new transversely polarized target & recoil proton detection)

- ϕ angle between the lepton scattering and hadron production planes
- $\phi_{\rm S}$ -angle between the target spin direction and the lepton scattering plane

Conclusions and Outlook

- Generalized Parton Distributions are a well-suited tool to explore the structure of the nucleon (nucleon tomography)
- COMPASS is a unique place to study DVCS and HEMP in the medium-x region
- COMPASS results on 2010 exclusive ρ^0 production show indications for transverse GPDs, when interpreted in terms of phenomenological Goloskokov-Kroll model
- 2016/17 data will deliver COMPASS DVCS results to help constraining GPD H and to better understand the transverse size of the nucleon
- Further ideas exist for >2018 to constrain GPD E

For a detailed discussion of 2009/2012 DVCS test run results: see talk by O. Kouznetsov)

SPARE SLIDES

Semi-inclusive background estimation

► LEPTO MC (COMPASS tuning)

1.) Parameterization of MC:

MC weighted with the like sign sample

$$w = \frac{N_{\text{data}}^{h^+h^+}(E_{\text{miss}}) + N_{\text{data}}^{h^-h^-}(E_{\text{miss}})}{N_{\text{MC}}^{h^+h^+}(E_{\text{miss}}) + N_{\text{MC}}^{h^-h^-}(E_{\text{miss}})}$$

- Parameterize the E_{miss} shape of weighted MC
- ▶ Binning appropriate for asymmetry extraction $(x_{Bj}, Q^2 \text{ or } p_T^2, \text{ target cell})$

Semi-inclusive background estimation

► LEPTO MC (COMPASS tuning)

2.) Fit to data:

- Normalize MC E_{miss} shape to data by performing a two component signal (gauss) + background fit
- ϕ , ϕ_S distribution for $7 < E_{\rm miss} < 20$ GeV scaled with the number of background events and subtracted from ϕ , ϕ_S distribution in signal range $-2.5 < E_{\rm miss} < 2.5$ GeV
- Asymmetry extraction with corrected ϕ , ϕ_S distribution
- \rightarrow Total amout of SIDIS background: 18% (6 LiD), 22% (NH₃)

Exclusive ρ^0 production - kinematical distributions

Asymmetry $A_{UT,LT}$ - NH_3 target (2007&2010)

as a function of Q^2

Asymmetry $A_{UT,LT}$ - NH_3 target (2007&2010)

as a function of p_T^2

Extraction of GPDs

 Postulate GPDs from first principle models

> K. Kumerički and D. Müller, Nucl. Phys. B 841, (2010) 1

 Fit Compton form factors to asymmetry data

M. Guidal and H. Moutarde, Eur.Phys.J. A 42 (2009) 71

31

Contempory hierarchy of parton distributions

Fourier Amplitudes

$$|\tau_{BH}|^{2} = \frac{K_{BH}}{P_{I}(\phi)P_{2}(\phi)} \left\{ \sum_{n=0}^{2} c_{n}^{BH} \cos(n\phi) + s_{I}^{BH} \sin(\phi) \right\}$$

$$|\tau_{DVCS}|^{2} = K_{DVCS} \left\{ \sum_{n=0}^{2} c_{n}^{DVCS} \cos(n\phi) + \sum_{n=1}^{2} s_{n}^{DVCS} \sin(n\phi) \right\}$$

$$I = -\frac{K_{I}e_{I}}{P_{I}(\phi)P_{2}(\phi)} K_{DVCS} \left\{ \sum_{n=0}^{3} c_{n}^{I} \cos(n\phi) + \sum_{n=1}^{3} s_{n}^{I} \sin(n\phi) \right\}$$

Azimuthal asymmetries in DVCS

Cross section

$$\sigma_{LU}(\phi; P_B, C_B) = \sigma_{UU}[1 + P_B A_{LU}^{DVCS} + C_B P_B A_{LU}^{I} + C_B A_C]$$

Beam-charge asymmetry

$$A_{C}(\phi) = \frac{\left(\sigma^{+\rightarrow} + \sigma^{+\leftarrow}\right) - \left(\sigma^{-\leftarrow} + \sigma^{-\rightarrow}\right)}{\left(\sigma^{+\rightarrow} + \sigma^{+\leftarrow}\right) + \left(\sigma^{-\leftarrow} + \sigma^{-\rightarrow}\right)} = -\frac{1}{D(\phi)} \frac{X_{B}}{y} \sum_{n=0}^{3} \frac{c'_{n}}{c'_{n}} \cos(n\phi)$$

Charge-difference beam-helicity asymmetry

$$A_{LU}^{I}(\phi) = \frac{\left(\sigma^{+\rightarrow} - \sigma^{+\leftarrow}\right) - \left(\sigma^{-\rightarrow} - \sigma^{-\leftarrow}\right)}{\left(\sigma^{+\rightarrow} + \sigma^{+\leftarrow}\right) + \left(\sigma^{-\rightarrow} + \sigma^{-\leftarrow}\right)} = -\frac{1}{D(\phi)} \frac{X_{B}}{y} \sum_{n=1}^{2} s_{n}^{I} sin(n\phi)$$

Charge-averaged beam-helicity asymmetry

$$A_{LU}^{DVCS}(\phi) = \frac{\left(\sigma^{+\rightarrow} - \sigma^{+\leftarrow}\right) + \left(\sigma^{-\rightarrow} - \sigma^{-\leftarrow}\right)}{\left(\sigma^{+\rightarrow} + \sigma^{+\leftarrow}\right) + \left(\sigma^{-\leftarrow} + \sigma^{-\rightarrow}\right)} = \frac{1}{D(\phi)} \cdot \frac{x_B^2 t \mathcal{P}_1(\phi) \mathcal{P}_2(\phi)}{Q^2} \mathbf{s}_1^{DVCS} \mathbf{sin}(\phi)$$

- Separation of contributions from DVCS and interference term
- Impossible in case of single-charge beam-helicity asymmetry

$$A_{LU}(\phi) = \frac{\sigma^{\rightarrow} - \sigma^{\leftarrow}}{\sigma^{\rightarrow} + \sigma^{\leftarrow}}$$

HERMES measured a wealth of azimuthal amplitudes

Beam-charge asymmetry:

GPD H

Beam-helicity asymmetry:

GPD H

PRD 75 (2007) 011103

NPB 829 (2010) 1

JHEP 11 (2009) 083

PRC 81 (2010) 035202

PRL 87 (2001) 182001

JHEP 07 (2012) 032

Transverse target spin asymmetries:

GPD E from proton target

JHEP 06 (2008) 066 PLB 704 (2011) 15

Longitudinal target spin asymmetry:

GPD H

Double-spin asymmetry:

GPD H

JHEP 06 (2010) 019

NPB 842 (2011) 265