Spin2014

The 21st International Symposium on Spin Physics October 20-24, 2014, Beijing, China

Nucleon Partonic Spin Structure to be explored by the Unpolarized Drell-Yan Program in the COMPASS-II Experiment at CERN

Wen-Chen Chang On behalf of the COMPASS Collaboration Institute of Physics, Academia Sinica, Taiwan

Outline

- Violation of Lam-Tung relation in π -induced Drell-Yan reaction.
- Boer-Mulders functions: TMD PDF accessed by the unpolarized Drell-Yan reaction.
- Unpolarized DY program in COMPASS-II at CERN: π , K and \bar{p} beam
- Summary

Drell-Yan decay angular distributions

 θ and ϕ are the decay polar and azimuthal angles of the μ^+ in the dilepton rest-frame

Collins-Soper frame

$$\frac{d\sigma}{d\Omega} \propto (1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos 2\phi)$$
$$\propto (W_T (1 + \cos^2 \theta) + W_L (1 - \cos^2 \theta) + W_\Delta \sin 2\theta \cos \phi + W_{\Delta\Delta} \sin^2 \theta \cos 2\phi)$$

 $q\overline{q}$ annihilation parton model:

 $O(\alpha_s^0) \lambda = 1, \mu = \nu = 0; W_T = 1, W_L = 0$

Lam-Tung relation (1978) Collinear pQCD: O(α_s^1), $W_L = 2W_{\Delta\Delta}$; $1 - \lambda - 2\nu = 0$

Angular Distributions of Drell-Yan Events

OMPA

a

I.R. Kenyon, Rep. Prog. Phys. 45 (1982) 1261

Figure 17. Measurements of the decay angular distribution of lepton pairs by Kourkoumelis *et al* (1980), Antreasyan *et al* (1980) and Badier *et al* (1980a). Fits to the form $1 + \alpha \cos^2 \theta$ are shown as full curves and are discussed in the text. (a) ISR ABCS, 4.5 < M < 8.7 GeV, (b) ISR CHFMNP, 6 < M < 8 GeV, (c) NA3, $\pi^- 200$ GeV, 4 < M < 6 GeV, $p_1 < 1$ GeV.

$$d\sigma(\Omega) \propto (1 + \cos^2 \theta)$$
⁴

NA10 @ CERN: Violation of LT Relation

Z. Phys. 37 (1988) 545

π⁻+W 140 GeV

π⁻+W 194 GeV

π-+W 286 GeV

E615 @ FNAL: Violation of LT Relation

PRD 39, 92 (1989)

Azimuthal Asymmetries Require Nontrivial Spin Correlation

The most general $q\bar{q}$ spin density matrix $\rho^{(q,\bar{q})} = \frac{1}{4} \{1 \otimes 1 + F_j(\vec{\sigma} \cdot \vec{e}_j) \otimes 1 + G_j 1 \otimes (\vec{\sigma} \cdot \vec{e}_j) + H_{ij}(\vec{\sigma} \cdot \vec{e}_i) \otimes (\vec{\sigma} \cdot \vec{e}_j)\}$ Violation of LT relation: $\kappa = -\frac{1}{4}(1 - \lambda - 2\nu) \approx \left\langle \frac{H_{22} - H_{11}}{1 + H_{33}} \right\rangle$ Collinear case: $H_{11} = H_{22}, H_{23} = H_{32} = 0, \ \kappa = 0$

Brandenburg, Nachtmann & Mirkes, ZPC 60 (1993) 697

Nonzero κ requires the correlation of the spins of quark and antiquark.

What will be the mechanism?

COMPASS

D. Boer (PRD 60, 014012 (1999)) Hadronic Effect, Boer-Mulders Functions

Spin-orbit correlation of transversely polarized noncollinear partons inside an unpolarized hadron

- Boer-Mulders Function h_1^{\perp} : a correlation between quark's k_T and transverse spin \mathbf{S}_T in an unpolarized hadron
- h_1^{\perp} can lead to an azimuthal dependence with $\frac{\nu}{2} \propto h_1^{\perp}(N)\overline{h_1}^{\perp}(\pi)$

$$h_{1}^{\perp}(x, k_{T}^{2}) = C_{H} \frac{\alpha_{T}}{\pi} \frac{M_{C}M_{H}}{k_{T}^{2} + M_{C}^{2}} e^{-\alpha_{T}k_{T}^{2}} f_{1}(x),$$

$$\nu = 16\kappa_{1} \frac{p_{T}^{2}M_{C}^{2}}{(p_{T}^{2} + 4M_{C}^{2})^{2}}, \quad \kappa_{1} = C_{H_{1}}C_{H_{2}}/2$$

$$\kappa = \frac{\nu}{2} \rightarrow 0 \text{ for large } |k_{T}|$$

Consistency of factorization in term of TMDs 8

Pasquini and Schweitzer (PRD 90, 014050 (2014)) Boer-Mulders Functions of Pion and Proton in Light-Front Constituent Model

COMPASS

Theoretical Interpretations of Lam-Tung Violation in pion-induced DY

COMPA

	Boer-Mulders Function	QCD chromo- magnetic effect	Glauber gluon
Origin of effect	Hadron	QCD vacuum	Pion specifically
Quark-flavor dependence	Yes	No	No
Hadron dependence	Yes	No	Yes
Large P_T limit	0	Nonzero	0
Reference	PRD 60, 014012 (1999)	Z. Phy. C 60,697 (1993)	PLB 726, 262 (2013)

Measurements with different beams π^{\pm} , p, K^{\pm} , \overline{p} over a wide kinematical range would help differentiating the origin.

COMPAS

E866, PRL 99, 082301 (2007)

Sea-quark BM functions are much smaller than valence quarks

COMPASS Setup

Beam:

Polarized lepton beam : μ^+ , μ^- 50-280 GeV/c Hadron beam : π^+ , π^+ , K⁺, K⁻, p

Target:

Polarized NH₃ and ⁶LiD target Liquid hydrogen target Nuclear target Various Combinations of Beam & Target

Dimuon Acceptance

COMPAS

COMPASS

DY Feasibility @COMPASS: Beam Test 2009

- 160 GeV/c π beam
- 2 cells polyethylene target
- Prototype hadron absorber and beam plug
- 3 days of data taking

DY Feasibility @COMPASS: Beam Test 2009

COMPASS

Hadron Absorber & Nuclear Targets

Hadron Absorber & Nuclear Targets (2014)

COMPASS

Fraction of Hadrons in M2-Hadron-beam at COMPASS target

COMPAS

http://www.staff.uni-mainz.de/jasinsk/index.htm

Beam PID & Nuclei Targets

COMPASS could study the beam- and target-dependence of Drell-Yan process.

Expected Statistics of Unpolarized Drell-Yan Events

DY ($4 < M_{\mu\mu} < 9 \text{ GeV/}c^2$) 140-day data taking

	NH ₃	AI (7cm)	W	NA3	E537	E615
π^- beam	285,000	55,100	549,000	21,220		27,977
K ⁻ beam	3,570	710	7,570	700		
\overline{p} beam	2,570	450	3,640		387	

COMPASS could improve the existing statistics of π , *K* and \bar{p} -induced DY by more than <u>one order of magnitude</u>!

Expected Statistical Precision of Dimuon Angular Distributions

OMPAS

 $4 < M_{\mu\mu} < 9 \ GeV/c^2$

OMPAS

 $^{4 &}lt; M_{\mu\mu} < 9 \ GeV/c^2$

COMPASS-II Drell-Yan Program

- 2014-2018 short-term plan:
 - Commissioning of polarized Drell-Yan experiment started in mid-October 2014.
 - Physics runs will take place for year 2015.
 - 2016-2017: DVCS program.
 - 2018: Polarized Drell-Yan program (to be approved)
- 2020-2024 medium-term plan (under planning) :
 - Polarized ⁶LiD target: flavor separation of TMD SSAs.
 - Long LH₂ and nuclei targets: unpolarized pion-induced DY.
- >2025 long-term plan (under planning) :
 - Extracted high intensity RF separated antiproton/kaon beam: (un)polarized antiproton/kaon-induced DY.

Summary

- TMD Boer-Mulders function, the spin-orbit correlation of transversely polarized partons, serves as a reasonable interpretation of violation of Lam-Tung relation in pion-induced DY process.
- COMPASS-II experiment will carry out the measurement of unpolarized DY process using π, K and p̄ beam over a wide kinematical range. The expected statistics for a successful data taking in 2015 will be more than 10 times larger than the existing world data.
- COMPASS-II unpolarized DY program will hopefully bring further understanding on the origin of Lam-Tung violation and also the partonic structures of protons and pions.